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ABSTRACT

The ability to construct accurate mathematical models of rea systems is an
important part of control systems design. A block oriented systems identification
approach models the unknown system as interconnected linear and nonlinear blocks. The
subject of this thesis is a particular configuration of these blocks referred to as a Wiener
model. The Wiener model studied here is a cascade of an input linear block followed by
a nonlinear block which then provides one output. We assume that the intermediate
signa between the linear and nonlinear block is unknown, only the Wiener model input
and output can be sampled.

The difficulty of Wiener model identification is the interaction of the linear and
nonlinear blocks. If one of the blocks is known then the intermediate signal can be
produced and identification becomes much easier. Thus this thesis focuses on
identification of the linear transfer function in a Wiener model. The question examined
throughout the thesis is: given some “small” amount of a priori information on the
nonlinear part, what can we determine about the linear part? Examples of minimal a
priori information are knowledge of only one point on the nonlinear characteristic, or the
sign of the output or simply that the transfer characteristic is monotonic over a certain
range. Nonlinear blocks with and without memory are discussed.

The contributions of this thesis are severa agorithms for identifying the linear
transfer function of ablock oriented Wiener system. These are presented and analyzed in
detail. These methods can be applied to either finite or infinite impul se response (i.e. FIR
or IIR) linear blocks. Each algorithm has a carefully defined set of a priori information

on the nonlinearity. Also, each approach has a set of assumptions on the input excitation.
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ABSTRACT

The ability to construct accurate mathematical models of rea systems is an
important part of control systems design. A block oriented systems identification
approach models the unknown system as interconnected linear and nonlinear blocks. The
subject of this thesis is a particular configuration of these blocks referred to as a Wiener
model. The Wiener model studied here is a cascade of an input linear block followed by
a nonlinear block which then provides one output. We assume that the intermediate
signa between the linear and nonlinear block is unknown, only the Wiener model input
and output can be sampled.

The difficulty of Wiener model identification is the interaction of the linear and
nonlinear blocks. If one of the blocks is known then the intermediate signal can be
produced and identification becomes much easier. Thus this thesis focuses on
identification of the linear transfer function in a Wiener model. The question examined
throughout the thesis is: given some “small” amount of a priori information on the
nonlinear part, what can we determine about the linear part? Examples of minimal a
priori information are knowledge of only one point on the nonlinear characteristic, or the
sign of the output or simply that the transfer characteristic is monotonic over a certain
range. Nonlinear blocks with and without memory are discussed.

The contributions of this thesis are severa agorithms for identifying the linear
transfer function of ablock oriented Wiener system. These are presented and analyzed in
detail. These methods can be applied to either finite or infinite impul se response (i.e. FIR
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CHAPTER 1
INTRODUCTION

This thesis studies the construction of mathematical models that predict the output
of real systems. Input and output samples from areal system are collected and then used
to infer a mathematical model. The mathematical model can then be used to predict the
response of the real system to other inputs. To illustrate the many benefits obtainable
from this approach, consider model predictive control of the pH of a chemical mixing
process [18]. In rea time, a mathematical model accepts flow rate measurements of
various chemicals entering a large unwieldily mixing system. The control algorithm
predicts and applies changes to the various flow rates to regulate the effluent pH to a
desired setpoint. Errors between actual and desired pH can be averaged over time and
used to adjust the model. The model that the control engineers started with probably
came from a system identification procedure.

For a given real world process, there are many different models that could be
applied. A block oriented model consists of a number of interconnected blocks each
having a carefully defined system function and various numbers of inputs and outputs.
These blocks are sometimes refered to as “black-boxes’. As described in [32], the
system function of a black-box is very flexible and has been proven useful for describing
many natural phenomena. Each block is classified as linear or nonlinear. The dynamics
of linear blocks are usually characterized by a set of transfer function parameters. The
nonlinear blocks are usually characterized by a nonparametric set of input output points,
although other representations are possible, for example piecewise linear described by

only a few parameters [3]. In this thesis the focus is on a particular block oriented
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technique called Wiener system modeling.

A Wiener system consists of a linear dynamic system followed by a static
nonlinearity, see Figure 1. Theinput u(k) isfiltered by linear system G(z). The output
x(k) then goes to static nonlinearity f (x(k)). Note that all these signals are represented
by discrete time indexed samples. Finaly, the output of f (x(k)) is disturbed by noise
v(k) to produce final output y(k). Throughout this thesis output noise v(k) is
uncorrelated with y(k) .

Linear system G(z) and nonlinearity f(x(k)) can take many forms. For
example G(z) can have afinite or infinite impulse response (FIR or IIR). Also f (x(k))

can be a ssmple memory-less input to output mapping or a more complicated memory
based system where the output depends on previous inputs. These blocks can have one
input and one output (SISO) or multiple inputs and outputs (MIMO). In this thesis we
study only SISO linear systems with either FIR or IIR system functions. We consider

nonlinearities with and without memory.

Wiener system structure

The Wiener nonlinear system is named after Norbert Wiener and was probably
first described in [38]. The block diagram of the discrete time Wiener model considered
throughout this proposal is shown in Figure 1. The system identification task is
challenging because usually the intermediate signal, x(k), is not available. Thus
identification has to rely only on observations of input u(k) and output y(K).

There are a wide range of applications of block oriented Wiener models. They

have been applied to both natural phenomena, such as the pH control process described
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above [18], and man made devices, such as valves [31] and power amplifiers [6, 25].

The Wiener model blocks are assigned to model the behavior of specific parts of the real

world system. For example, in the pH control system discusses above the Wiener model

linear subsystem represents the mixing dynamics of the input reagent streams and the

nonlinear subsystem represents the nonlinear titration curve (pH as a function of the

chemical components).

u(k)

= G(2

Figure 1: Wiener system block diagram

x(k)

F(x(k))

v(k)

+ y(@

+

Identification of Wiener systems has been an active research area for many years

and there exist severa identification algorithms in the literature.

Most of these

algorithms rely on the following assumptions about the input and/or output and/or system

structure:

1. Gaussian random input, see[7, 19 or 22]

2. The unknown nonlinearity is invertible and/or monotonic, and represented by

some known basis functions, see[2, 19 or 41]

3. Theunknown nonlinearity is a piecewise linear function, see [36]

In the first case, identification of the linear system is possible without knowing additional

facts about the nonlinearity. This is due to the Bussgang theorem ([12], Theorem 1)

which says that for a Gaussian distributed input signal the cross correlation between input

and output of a nonlinearity is a scaled version of the input auto correlation, independent
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of nonlinear distortion. The second and third cases use some a priori information about
the Wiener model to allow identification without a Gaussian distributed input.

In this thesis we ask the following question about Wiener models: what is the
least amount of a priori information on the unknown system so that identification of the
linear block is possible with a non-Gaussian input? In Chapters 2 and 3, a starting point
to answering this question is to consider what constitutes the least amount of a priori
information on the nonlinearity so that the linear part can be identified without the
Gaussian assumption on the input. In Chapter 4, we identify a linear block that is
followed by a memory nonlinearity. A minimal aprori information set is defined for this
more complicated nonlinearity.

Clearly, if the linear part can be reliably identified and the internal signal x(k)
recovered then identification of the nonlinearity isrelatively easy. However, quantifying
what exactly is meant by “The least amount of a priori information on the nonlinearity” is
very difficult.

Some efforts have been made to answer this question in an indirect way, i.e. to
develop identification algorithms using as little a priori information as possible. To this
end, some work has been reported in the literature [41] that a monotonicty assumption on
the unknown nonlinearity ensures a (not necessarily unique) solution for an FIR linear
system. This was the first time an identification algorithm was developed in a non-
Gaussian case by only assuming monotonicity of an unknown, possibly non-parametric,
nonlinearity. Part of the research presented here extends and enhances the work of [41]
in several directions.

The purpose of this research is to develop identifiability proofs and associated
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algorithms that approach the minimal amount of a priori information needed on the
Wiener system nonlinearity to allow linear system identification. To be specific, this
research is concerned with parametric identification of the first block in Figure 1, the
linear system, under one of the following sets of a priori information on the second block,
the nonlinearity:

1. Only the nonlinearity output sign is known, i.e. one bit quantization.

2. Only asingle point on the memoryless nonlinear characteristic is known.

3. Thenonlinearity is known to be monotonic over an output range.

4. The X-axisintersection points of amemory nonlinearity are known.
In the following chapters, the above conditions are used to develop identifiability proofs

and algorithms for both FIR and IIR linear systems.

System identification procedure summary

The following steps are common to all the block oriented nonlinear system

identification algorithms developed in this thesis.

I nput stimulus choice

For the purpose of this thesis, we will have to assume that all input identification
signals are independent and identically distributed (i.i.d.). The requirements on the

probability density of each sample are very minimal.

Data collection
The next step is to collect input and output data records, u(k) and y(k) for
k=12,...,N from the system to be identified. As will be discussed, N should be as

large as possible for better estimation performance.
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Model selection

Past experience with the real system to be identified, or some other insight, may
lead to the conclusion that a Wiener model is a good starting point. If so, decide what
prior information can be assumed. Examples are, what is the maximum order of the
linear block or can we assume that the nonlinearity goes through the origin and is

monotonic. See[26, 32] for an indepth discussion of this step.

Model estimation

The Wiener system linear and nonlinear blocks must be parameterized to fit the
real data collected in the second step. The linear system is assumed of be of known
order. The nonlinear subsystem could have a structure that can be described by a small
set of parameters. Sometimes this is not possible and the nonlinearity has a
nonparametric characterization. In this case the nonlinear function is represented by a set
of estimated input/output points.

For the linear part, the estimation procedure adjusts the linear parameters to

minimize the error between the output of the unknown system and the estimated system.
N

More precisely, we minimize a cost function such as J, :%Z(e(k)z) where
k=1

e(k) = (y(k) +v(k))-9(k) and y(k) is the true system output, §(k) is the estimated

system output that we can control and v(k) modelsthe noise. There are various gradient

based search techniques to minimize J,,. Thereisalso aset of highly organized iterative

seach techniques called Genetic Algorithms[16].
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Model validation

This is the final test to determine if the model produced by the above steps is
useful. A fresh set of input and output data records, u(k) and y(k) for k=1,2,...,N is
collected from the system to be identified. The new input samples are processed through
the estimated model. The model output is compared with the new output samples and the
mean squared error cost function is evaluated to determine if a good fit has been

achieved.

Thesisoutline

Throughout the thesis, discussion centers on the following three sets of Wiener
system a priori information on the nonlinear block:

1. Quadrant apriori information

2. Single point a priori information

3. Localy monotonic apriori information
Chapter 2 defines these in detail and then goes on to discuss indentification of an FIR
linear block given each one of the above a priori information. Chapter 3 is an extension
of the proofs and analysis of Chapter 2 to an IR linear block. Chapter 4 goes further and
applies these techniques to a nonlinear block with memory. Finaly, Chapter 5 presents

overall conclusions.

www.manaraa.com



CHAPTER 2
FIRLINEAR PART IDENTIFICATION

This chapter shows how the impulse response of the FIR linear part of a Wiener
system may be identified using a carefully defined set of minimal a-priori information on

the nonlinear part.

Problem statement
The Wiener system of Figure 1 is described by

x(K) = (u(k),u(k=1),...,u(k—n+1))h=¢" (K)h

(2.1)
y(k) = f(x(k)), k=12,...,N
where u(k), x(k) and y(k) are the input, the internal and the output signals,

respectively. Parameter vector he R" isto beidentified. Thefirst non-zero element of h
is positive and ||h]| =1 (note that throughout this thesis we define x| =, > %7 ).
i=1

This condition is necessary and standard in Wiener system identification because the
scaling of the linear and nonlinear subsystems cannot be separately identified. The

internal variable x(k) isassumed unknown. Both x(k) and y(k) are assumed bounded
for al k. As stated, not much information is known about nonlinearity f (x(k)). Input
u(k) isi.i.d. but not necessarily Gaussian. Finally, it is assumed that an upper bound, n,

on the impulse response of the FIR linear part is known.

We say that the parameter vector h is identifiable from the input-output data set
{p(K), y(k)}sz1 if h can be uniquely identified from the Wiener system model and the data

set, independent of the unknown nonlinearity f (x(k)). Equivalently, there does not exist
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a different pair (ﬁ, f_) that would produce an identica input-output data set

{p(K), y(k)}E:1 As previoudly stated, the pertinent question is: what minimal a priori

information on the unknown f (x(k)) allows identification of h?

Quadrant a priori information

This section considers a case where only quadrant information about the nonlinear

subsystem is known a priori. The nonlinearity is strictly in the first and third quadrants
so that: sign(x(k)) =sign(y(k)) for k = 1...,N. This choice of first and third

guadrants is for simplicity only. The results can be extended to other quadrant a priori
information cases. The nonlinearity is not assumed to be continuous, monotonic or
invertible except with regard to quadrants. For example, the nonlinearity can be

discontinuous at the origin. Now we can observe the sign of x(k) by processing the

output of the system to be identified, y(k), through the following:

+1 y(k)>0

sign(y(k))=< 0 y(k)=0 (2.2)
1 y(k)<0

Sometimes this is written as sgn(x(k)). Also, some references (for example
mathematical authority [42]) define this function with +1 outputs only. For this thesis,
we must have the definition above.

There is only sparse information in the published literature about system
identification using polarity sensing. In the case that the nonlinearity is known, although
not necessarily invertible, convergence results were obtained in [39] with a quantized

output signal provided that there is signal energy around the switch points. In particular,
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10

global convergence was achieved in [39] for a FIR system with an arbitrary and known

output quantizer.

v(k)
K + K
u(k) nzthz? e ihz™ (k) 4 y(k)
+
€ e(k)
N A - X(K) £ o y(K)
o hz—l+|,]zz—2 +_“+hnz—n+l f(X(k))

Figure 2: Wiener FIR system identification, quadrant only a priori knowledge

Figure 2 shows the system identification setup, v(k) is arbitrarily distributed
noise, uncorrelated with input u(k). The system identification agorithm adjusts

coefficient estimate h to match unknown coefficients h. The sguare boxes on the right

side implement sign function (2.2). A cost function based on the sign error output,
e(k) = sign(y(k) +v(k))—sign((k)), isused to direct the adjustments of h. Although
f(f((k)) is shown, it is not necessary for linear part identification. If included, it must
conform to Assumption 2.1, below.

There is an obvious practical advantage to only needing to observe the sign of
y(k). The output sensing circuit can be as simple as a zero crossing detector. In
addition, the detected polarity can be transferred as just one bit with high noise immunity.
The following assumption defines a priori quadrant information.
Assumption 2.1:

The unknown nonlinearity is strictly in the first and third quadrants. In other

words, sign(x(k)) =sign(y(k)) for k=1,..,N Alternatively, the unknown
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nonlinearity can be in the second and fourth quadrants, where

sign(x(k)) = —sign(y(k)) for k=1,...,N .

The following assumption defines the allowable inputs for this chapter’ s analysis.
Assumption 2.2:

Input u(k) is i.i.d. and the input probability density function is positive and

continuousin an interval [—a,a] for some a> 0.

To establish identifiability, we propose the following:

Theorem 2.1:
For any unit vector h = h, with probability one as N — oo, there exists some
#(k), 1<k <N sothat sign(y(k)) = sign(x(k)) = sign(¢" (k)h) = sign(¢" (k)h)
Proof:
The proof has two parts:
1. For any input data vector ¢(k),1<k<N and unit vectors h and h,
represented in rectangular coordinate space R", there are regions (called sign
difference regions) in R" such that sign(¢’ (k)h) = sign(¢” (k)h).

2. Because the positive distribution over interval [a, —a], with probability one
some ¢ (k) will beinthe sign difference regionsas N — .

In the first part, we show that for any unit vector h #h, there exists some ¢ SO
that sign(¢™h)#sign(¢"h). For any unit vector h#h, there are two cases:
Z(h,h)>90° and £(h,h)<90°. For the first case, let ¢ be any non-zero vector such
that:

90° < Z(¢,h) <180°, 0< Z(¢,h) <90° (2.3)
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Thisleads to:
#"h=|g]Incos( (9. ) <O
- _ _ (2.4
¢"h =[ ¢ || cos( £(¢,h))>0
and thisin turn implies:
sign(¢"h) # sign(¢"h) (2.5)

For the second case, denote 0< 0 = £(h,h) <90°. Let ¢ be anon-zero vector that liesin

the plane spanned by h and h such that:

1(¢,h)=90°+%0>90°, 4(¢,ﬁ)=90°—§9 <90° (2.6)
Thisimplies
¢"h=¢|[n|cos(<(¢,h)) <0
471 =[] 7] cos{ 6. >0 =7
and thus
sign(¢"h) # sign(¢™h) (2.8)

From the above discussion, for any unit vector h # h, there exists some non-zero vector
¢, independent of the magnitude, and sign(¢™h) # sign(¢'h).

For the second part of the proof, we construct a cone with a small volume around
¢. As long as the volume is small enough, by the continuity argument,
sign(¢"h) # sign(¢"h) for al ¢ in the cone. Now, by the input probability distribution
continuity of Assumption 2.2, with probability one as N — oo, some ¢(k) will bein the

cone. This completes the proof.

For an agorithm based on the above theorem, the quadratic cost function based
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ontheerror e(k) = sign( y(k)+v(k))—sign(x(k)) in Figure 2 will be used:
I =3 ek = D fsign(y(k) + (k) - Sgn(IK)T 29)

The following minimization problem is solved to find the estimate h

. N
h=arg miniZe(k)2 (2.10)
W Nig

The theorem only establishes that there is a unique global minimum at h=h such

that if h=h then the cost function will be greater than zero for large enough N.
However, it is not clear if there are one or more local minimums that would interfere with
anumerical simulation.

To function reliably, the cost function should have no local minimums and be

nonzero whenever h=h. To this end, consider the two dimensional case illustrated in

Figure 3. First, suppose the input u(k) is distributed such that the probability density of
#(k) is positive for any direction. Next, consider that the space R* can be divided into
the four sectors shown in Figure 3. Clearly, ¢"h=|¢||h||cos6 implies:

$(K) e Sector 1 = |sign(¢” (K)h) —sign(¢" (K)h)| = |e(k)| =0

$(K) < Sector 2 = |sign(¢” (K)h) - sign(¢" (K)F)| =e(k)| = 2 o1
#(K) < Sector 3 = |sign(¢” (K)h) - sign(¢" (K)F)| =[e(k)[ =0 |

$(K) € Sector 4 = [sign(¢” (K)h) —sign(g" (K)R)| = [e(k)| = 2

Let F(0) >0 bethe probability that ¢(k) liesin sectors2 or 4. A reasonable observation
from Figure 3 is that, given assumptions on the input u(k), alarger 0 results in larger

sign difference regions which result in a larger cost function in (2.9). To help quantify
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this, consider the sum of a series of N squared sign errors:

) = aw 2.12)

%ZN:(sign(q’)(k)T h) —sign(g(k)" h)

k=1

Here, w is the number of samples of y(k) in the series that have different signs. Thus

4WW Isthe relative frequency probability of landing in sectors 2 or 4.

u(k)A

- >

ik-1)

\J

Figure 3: Sign differenceregions

We would like the average of the relative frequency probability over N samples to be a

direct function of 9:

li m%i(sign(fﬁ(kf h) - sign(g (k)" ﬁ))2 = 4F (0) (2.13)

N—o

k=1
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Properties of F(0) are described in more detail below. To show this correspondence we

prove the following mean sguare convergence:

E{%ZN:(Sign(ﬁb(k)T h) —sign($(k)" ﬁ))2 —4F(9)} >0 asN-ow (214)
See the Appendix for details of the proof. Thisimplies that, in probability:
li miZ (sign(cb(k)T h) —sign(g(k)" ﬁ))z = 4F (0) (2.15)

N—o0 k=1

sector 3

%or 2

Figure 4: Four sign differenceregionsin three dimensions

The idea can be easily extended to a higher dimensional case. Let h and h be unit
vectorsin ®". Consider that h and h span a plane, S(h,ﬁ)={ah+ﬁﬁ, Ot,,BeR}, ina

two dimensiona subspace of R". Let r(n),—z <n <z denote the unit circle on the
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plane. Further, let r(0)=handr(0) =h. Without loss of generdlity, rotate the coordinate

referenceto line up S(h,ﬁ) and r(n) with thefirst two axes:

r(n)=[cosn) sin() 0 0 - 0O
r(0)=[cos(6) sin@®) 0 0 - 0] =h (2.16)
r(0=[1L 0 0 0 - 0] =h

A vector tangent to r(n): ?z[—sin(n) cos(n) 0 O -- O]T is aso a normal
n

vector for plane Q(). Q(n) and S(h,h) are perpendicular and both contain the origin.

Their line of intersection is thus collinear with aradius of r () at angle n. For example,
Q(0) lines up with h and Q(0) linesupwithh . Two planes, Q(Q—%) and Q(%),

divide up R" into the same four sectors seen in the two dimensional case. A three
dimensional exampleisshown in Figure 4.
The following additional theorem helps establish cost function monotonicity:

Theorem 2.2:

>

For any unit vector h with 0=2(h, ﬁ) for-n<0<rx:

I mﬁi(ggn@(kfh)—Sign(¢(k)Tﬁ))2=4F(0) in probability. F(6)20 is

N—ow k=1

the probability that ¢(k) lies in sectors 2 or 4, further: Thus F(0) is strictly
decreasing for -7 <60<0 and strictly increasing for 0<f6<z and
F(O)=0=0=0

Proof:

The proof of the above theorem is a direct consequence of the observations.
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Consider Assumption 2.2. The continuity on the distribution of input u(k) guarantees
that ¢(k) assumes any direction in R" with a postive probability. Hence, the
probability F(0) that ¢(k) lies in sectors 2 or 4 is monotonic as a function of the
(probabilistic) volume of sectors 2 and 4. Thisleadsto the statement that F(6) isstrictly
decreasing for -7 <0 <0 and dtrictly increasing for 0<60 <z . This completes the
proof.

The existence of one and only one global minimum is based on infinite N.  For
finite N, it may be possible that although h= h, no ¢(k) happen to inhabit either sector 2

or 4 and the cost function will be zero. This would not happen with infinite N. As the

next section will demonstrate, alarge N can be chosen to achieve reliable convergence.

Simulation testing

A system identification experiment was set up using the circuit of Figure 2

combined with the cost function of (2.9). The input u(k) for k=12,...,N isi.i.d.
uniformly in [-1,1] and noise v(k) is Gaussian. For adjusting the estimate h, based on

the cost function, the recently developed Genetic Algorithm (GA) was chosen as the best
performer. The GA used here was adapted from [1]. For this ssimulation, the number of
total GA parents is 32. Note that the GA is a zero order carefully organized heuristic
search algorithm that could be suboptimal. More GA details are provided in Chapter 3,
for example see Figure 22. Also see reference [16].

The unknown FIR transfer function to be identified is:

[0.5795— 0.4745z'+0.38852°-0.3182°+0.2604 z*

2.17
-0.21327°+0.17462°-0.1429 2" +0.117 z°° - 0.095792‘9J (17
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Thislinear system was followed by the following discontinuous nonlinearity:

0.8x(k),  x(k)<O
y(k) =11.4x(k), 0<x(k)<0.5 (2.18)
2x(k),  x(k)>05

Figure 5 and Figure 6 are plots of the FIR frequency response and the nonlinear transfer
function, respectively. The error minimized by the GA is defined as MSEzHﬁ—hH.
Each point in Table 1 is the result of 500 GA iterations; total GA run time for each point

was about 15 minutes. Because the GA can potentialy take hours to search a high

dimensional space, areasonable run time isimportant when considering practicality.

SNR (dB)

5

10

20

40

MSE

0.0529

0.0394

0.0211

0.0044

Table 1. Quadrant information estimation error vs. noise level, N=35000

5000

15000

25000

35000

50000

MSE

0.0422

0.0358

0.0359

0.0211

0.0175

Table2: Estimation error vs. N, for SNR = 20dB

It should be emphasized that the uniqueness of the unknown parameter vector h is
achieved as the number of data points N — «. For finite N, the cost function behaves as
astep function and a dlight variation in the estimate may not give any change. The use of
the sign function in the identification algorithm is dictated by the available information,
i.e. Assumptiom 2.1.

Table 2 shows the simulation results for SNR = 20dB and various values of N.
Recall that the convergence results are derived under the assumption that N —> . A

large N should lead to a small estimation error as supported by the results of Table 2.
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Freq. Resp. of Unknown FIR

(gp) ssuodsay

Frequency (normalized)

Figure5: Simulation example, FIR lowpass response

Unknown Nonlinearity

Input

Figure 6: Simulation example, nonlinear block
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Single point a priori information

Consider identification of the FIR linear part assuming we know one point on the
static nonlinear transfer function such that f (x,) = y,. Take the point to be at the origin
for simplicity. Unlike the a priori quadrant information described above, for

identification under single point a priori information we assume continuity on f (x(k))

in the neighborhood of the origin. For example, the preload nonlinearity of Figure 7 is
acceptable for a priori quadrant information but will not work for single point a priori

information.

y(K)

x(K)

Figure 7: Unacceptable nonlinearity for single point identification

Assumption 2.3:
It is assumed that f(0)=0. Further, f(x)=0< x=0 and f(-) iscontinuous

in the neighborhood of the origin.
Notice that Assumptions 2.1 and 2.3 are not equivalent. In particular, Assumption

2.1 does not necessarily imply Assumption 2.3 because no continuity on f(-) was

assumed in 2.1. As mentioned, the pre-load nonlinearity satisfies Assumption 2.1
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because al input/output points are in the first and third quadrant but does not satisfy
Assumption 2.3 because f (0) #0.

Intermediate signal x(k) is unknown. From Assumption 2.3, only x(k) =0 is
known if y(k)=0. Hence, non-zero y(k) does not reveal any information on the
unknown x(k) and is not very useful in terms of identification. Identification hasto rely
on y(k) =0 or y(k) that is closeto zero.

The following lemma is fundamental to understanding single point system
identification:

Lemma 2.1:

Assume that the PDF of u(k) has a positive support containing a non-empty

interval [—a, a] for some O<a<1. Then hisidentifiable for a given input-output
data set {¢(i),y(i)}21 if and only if there exists some 1< p, < p,<---<p <N

where the output y(p,) iszero valued (and thus x( p, ) isalso zero valued) and

the corresponding matrix ®(p, p, --- p,) satisfies
¢"(p)
rank ®(p, p, -+ p)=rank ¢ (:|O2) =(n-1) (2.19)
¢" (P
Proof:
First we prove sufficiency. That is, the existence of 1< p, <p,<---<p, <N
where x(p,) and output y(p,) are zero valued and rank ®(p, p, - pJ)=(n-1)
implies unique identifiability. If rank ®(p, p, -+ p)=(N-1) then any non-zero
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solution h of:
¢'(p) x(p)) (¥(p)) (O
#1(p) | | X(R) || ¥(Ro) | _| O (2.20)
¢ (.pk) X( bk) y(bk) 0

liesin the one dimensional null subspace of ®(p, p, -+ p.). Eachsolution hasthe

form ah. So the solution is unique by normalization. End of sufficiency proof.

Second, we prove necessity. That is, unique identifiability implies the existence
of 1<p <p,<--<p, <N where x(p,) and output y(p,) are zero valued and rank
d(p, p, - p)=(n-D. This proof makes use of logicaly equivaent
contrapositives. That is, instead of proving from Lemma 2.1 that h is identifiable if and

only if there exists some 1< p, < p,<--<p, <N where the output y(pk) IS zero

valued and the corresponding matrix rank ®(p, p, -+ p,)=(n-1) , weprove:
1. Ifrank ®(p, p, - p)#(n-1 then hisnotidentifiable.
2. Ifrank ®(p, p, - pJ)=(-1) and y(p)=0 for i=1...,k then his
not identifiable.
We start by proving that identifiability impliesrank ®(p, p, - p)=(n-1)

for some 1< p, < p,<---<p, <N (item 1 above). First, we look at identifiability when

rank ®(L..,N)<(n-1). Let h be a vector, independent of h, in the null space of

®(1,...,N). Itfollowsthat:

www.manaraa.com



23

X(1)

®(L...,N)(h+h) = d(L.... N)h= X(:Z)

(2.22)
X(N)
This contradicts the uniqueness of h. Therefore if the null space has dimension two or

higher then h cannot be uniquely identifiable. Second, we look at identifiability when

rank ®(1,...,N)=n. Sinceh=0, we have:
¢' (D) 0

9’0 || O

(2.22)
o' (k+1) X(K+1)

¢"(N) X(N)
for some k so that x(k+1)#0,...,x(N) =0 up to arow permutation. Here k<N can

have any value as long as the linear system output is zero for the first k rows. The entire

matrix has null space dimension zero. Although the rank of ®(k +1,...,N) =n, consider

a sub-matrix made up of only thefirst k rows:

¢ (1) 0
: |h=|: (2.23)
¢" (k) 0
The given hypothesis is that rank ®(p, p, - p)#(n-1). On the other hand,

h=0 implies that rank ®(1,..,k)<n. The only other possibility is that rank
@(1,...,.k) <(n—2). Thus there exists a non-zero h, independent of h, in the null space

of ®(1,...,k) andasmall a so that:
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¢' (@) 9
$® | yany=| ©
¢ (k+D) X(k +1) (2.24)
¢"(N) X(N)

X(k+1)#0,...,X(N) =0
Thus h isnot identifiable using the first k rows. Remove these and we have:

¢ (k+1) X(k+1)
: (h+ah) = :
¢" (N) X(N)
X(k+1)=#0,...,X(N) =0

(2.25)

Note that rank ®(k+1,...,N)=n. Recal the nonlinear transfer function one point a
priori knowledgeislimitedto f(0)=0.

Since any function can have the same output value for two different input values,
and because we have no knowledge of the nonlinear function except at the origin, we can
not identify h on the basis of non-zero x(.) and X(.). For example, let f(.) be an
arbitrarily defined nonlinearity except at:

f(0)=0
f(X(k+1) = f (x(k+12)) = y(k+1) (2.26)
F(X(N)) = f (X(N)) = y(N)
Thisimplies that the pairs (h, f) and (h+ah, f) produceidentical input-output data sets
and h is not identifiable. Thus we have shown that (2.22) cannot be used to identify h.

We conclude that ®(p, p, - pJ)=(n-1) forsome l<p <p,<---<p, <N isa

necessary condition.
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For necessity we must prove that identifiability implies both rank

o(p, p, - P)=(n-1) for some 1<p <p,<---<p,<N and x(p,) is zero
valued. So far we have proven that identifiability implies rank
d(p, p, -+ p)=(n-1) for some 1< p <p,<---<p,<N. To prove that given
rank ®(p, p, - pJ)=(n-1 forsomel<p <p,<---<p <N identifiability also

implies x(p,) iszero valued, we use the contrapositive approach in item two, above.
If rank ®(p, p, - pJ)=(n-1) for some 1<p <p,<---<p, <N and
X(p,) is not zero vaued for al pPx then h is not identifiable. If rank

d(p, p, - P)=(n-1) then the null space is one dimensional, i.e. aline. Any h

on this line is unique to within a scaling factor. For h to span the null space, outputs
X(p,) corresponding to rows of ®(p, p, --- p,) must al be zero due to the
definition of a null space. Say, for example, 6 below, is non-zero. Then, as described

above, the situation could exist where the nonlinear function f(x(p,))=06 as well as

f (X(p,)) =6 . Thiswould make h not identifiable.

¢ (p) y(p)) (6
¢ (:pz) he Y(:pz) _ f’ (2.27)

¢" (P y(p)) (0
Thus identifiability implies both rank &(p, p, - pJ)=(n-1) for some

1<p<p,<---<p <N and x(p,) iszero valued.

From the above results, it is obvious that to identify h, output samples have to be

collected when y(p,)=0. Exact values of y(p,)=0 are unlikely in practice. Practica
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system identification will have to rely on samples collected wheny(p,)=0. In the

following, we show that these will work if asmall identification error is allowed. To this

end we need some preliminary analysis.

Let €,6,...,6 bean orthonormal basis of %"with g =h. Recal that |h|=1

Given any small ¢ >0, construct a cone C, around g for i=12,...,n. For
i=1,2,...,(n-1):

¢ €C () < cos(£(4,€))>(1-¢,) (2.28)
In Figure 8, the bottom of these cones appears truncated due to the constraint a < 4] <1,
whereaisdefined in Lemma2.1. For i =n:

¢ €C,(g,) < cos(L(p.e))=1-¢ (2.29)
And also 0<|¢|<e. SeeFigure8for athree dimensional illustration.

Under the conditions of Lemma 2.1, for any ¢ >0 and O<a<1, there exists a

small £ =f(¢,a)>0 sothat for al ¢ <&, we have:

$()eC,¢()eC
|cos(£($(1). (1)) < & (2.30)
[6G)7 ()| =[] 0] |cos( £( (), (1)) < &
¢ (i)
rank ¢ (2) =n (2.31)
#"(iv)
if ¢(i,)eC,....¢9(,)€C,,#(n)eC,. Now consider a sample matrix with (n—1) rows.

Let ¢(i) e C, fori=12,..,(n-1). Wecanwrite:
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¢()=B.8+B &+ B &1+ B,h (2.32)
Where B for i = 12, ...,n-1and j =12, ...,n are the projection coefficients of
¢(i) into the orthonormal basis (e, & ... &) = (e, & ... h). Since al the ¢(i) for

i=12,...,(n-1) have aconstraint a< |4 <1, the projection coefficient matrix is strictly

diagonally dominant, for sufficient smallz: |3 > Zn:|ﬂi'j | i=12..n-1
=1
ji
(b (1) ﬁ1,1 ﬁ1,2 "' ﬁl, n elT
: | : : : T (2.33)
¢p(n-2) ﬂn—Z,l ﬂn—2,2 T ﬁn—Z,n €1
¢ (n _1) ﬂn—l,l ﬁn—l,l t ﬂn—l,n h'

The last column is very small since it is the projection of the first (n—l) cone vectors

onto true coefficient vector h.
AS

a<|p(2)=1 T C,

43 <&

C
a<|o@] <1 3

Cl

Figure 8: Cone construction for three dimensions
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The following theorem helps explain why single point system identification is
possible when, instead of being equal to zero, outputs are only close to zero. This result
shows the practicality of the single point a priori information system identification
approach.

Theorem 2.3:

From Assumption 2.3, we have nonlinearity a priori point information,

f(X)=0< x=0,and f () is continuous in a neighborhood of the origin. Also
assume that the PDF ofu(-) has a positive support containing a non-empty

interval[-a,a] for some 0<a<1.

1. Given any small € >0, with probability one as N — « there exists a
sequence (i) for 1=1,2,...,n such that |x(i,)|=|®(i,)h <& and rank
O(iy,i,...,i.)=n.

2. The matrix ®(i,i,...,i,) can be written as: ®(i,,i,...,i,) =Q+E(g).
For some Q and E(¢), where rank Q = n-1, independent of ¢, and
E(¢) >0 as € > 0. Further, let the singular value decomposition
(SVD) of @ be CD(il,iz...,in)=U(5)2(5)[vl(g),vz(g)...vn(e)]T. Then,
v, (6)—h| —0 as € - 0 (modulo + signs).

Proof:
To prove part 1 of Theorem 2.3, consider a set of input sample indexes that select

a matrix of non-overlapping input sample vectors, ®(p,, p,...., P,), that inhabit the

cones described previously. To make the proof simpler, the input sample vectors are
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statistically independent and non-overlapping™.
Consider a set of indexes p,<p,<:--<p,<p, where p, is in the range
[0, N —nz] and p,=n+p_,. Forany ¢>0, thereis probability o >0 for each set of

indexes such that:

¢(p) €C,
¢(P,1) €C,y (234
¢(p,) €C,
In other words there is non-zero probability o that [x(p,)| =‘¢>T(p,)h‘ <g fori=1,2, ..n
and at the same time:
¢ ()

rank (2.35)

' =n
¢T ( pn—l)
¢ (P,)

Note that:

1. ‘d)T(pl)h‘Sg fori=12,...,n—1becauseh=e,and ¢(p) eC. .

2. |¢"(p)h <& because 0<|¢(p,)|< and [In]| = 1.
For each set of indexes p, < p, <:--< p, < p, starting at some randomly chosen

P, define the event: A = {at least one ¢(p)¢C for i=12...,n} and aso
P(ﬂpl):a. If m isthe number of such index sets then, due to the Assumption 2.2 and

the independence of ¢(p,), we obtan: P{A NA, N..nA }=(1-a)">0 as

Y In the simulation we will |et the sample vectors overlap. Even though the sample vectors may not be
independent they can still be at right angles to each other.
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m— . This says that the probability is zero of sample vectors not lining up in

orthogona cones for any value of masm— o . Furthermore, because Z(l—oc)m <00,

m=1

the Borel Lemma ([27], page 240) tells us that the convergence in probability is changed
to convergence with probability oneas N — co. Thus (2.34) is true with probability one

for some set of indexes p, < p,<---< p, < p, a8 N —> . This completes the proof of

part 1 of Theorem 2.3.

For part 2 of the proof we note that from (2.32) and the above proof:
¢(ij):zn:/3ij,kek for j=12...,n. Note that ¢(in)€Cn:>||¢(in)||58:>‘/3in,k‘38- If we
]
assume that e = h, on arectangular axis and the other basis vectors are at right angles
then the requirement ‘q&T(p,)h‘Sg for i=12,...,n implies a diagona dominance, in the

first (n—1) rows. In the construction below, hisanull space basis for Q

o' (i) | B.. B2 Bin e
Pl-rlnarh) = 0 ()| Boa B2 Boin || €04
o' (i,) ﬂin,l ﬂin,z ﬂin,n h,
i} - o - (2.36)
ﬂil,l ﬂil,z ﬂil,n—l e_l-_r ﬂil,n
| e
B Bose -+ Boons|€a| | Brn
L ﬁin,l ﬂin,z ﬁin,n—l ] T—1 L ﬂin,n i
Define: i
i ﬂil,l ﬂil,z ﬂil,n—l eI [))il,n
| | S, .
Q ﬁimlvl ﬁinfl!z ﬁin,l,n—l e:1-—2 (g) ﬁin—lvn (2 37)
L ﬁin,l ﬁin,z ﬁin,n—l | T—l ﬁin,n
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Since |h| = 1and h = ¢, isorthogona to g for i = 1,2,...,n-1:

®(iy,i,,....i. )h=Qh+E(s)h =
B B o Bna |

o,

1
>
=

x(i,)

(2.38)

h+ h'h= =l .

ﬁin,l,l ﬁin,l,z :Bin,l,n—l q:_g ﬁin,l,n ﬁin,l,n X(In_1)
e;]r .

:Bin,l :Bin,Z ﬁin,n—l | 1 L :Bi n :Bi n X(In)

Thus‘x(ij)‘z‘ﬁij‘n <e¢—>0 and E(¢) >0 as ¢ >0

Moreover, rank ®(iy,i,,...,i,)=n and rank of E(¢) <1 impliesrank Q is (n—1)
and Qh=0. Inaddition, considering the hypothesized vector basis, the matrix:
i B B2 - B i
B e = B (239
Bi Bo ~ Bonsl

is strictly diagonally dominant and ‘ﬁnvk‘<g—>0 as ¢ > 0. Thisimplies rank Q is
(n—1), independent of ¢ by the Gerschgorin Circle Theorem (see[17], page 320). From
[23], each of the (n—1) singular values of Qisin aball centered at S, with radii defined
1 n-1 n
o -2/ S+ S|
j=1 =1
J#i j#
The diagonal dominance and the Gerschgorin Circle Theorem insure that the

singular values and singular vectors corresponding to the first (n—l) rows of Q+ E(g)
remain there and the last singular value and singular vector remains associated with h, .

Now write Q:UQZQ(\/Ql,...\/Qn)T =h=V,, (modulo + sign). Clearly:
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Oiy,i,....1,) =U (€)Z(e)[Vi(€), V(). V, (g)]T =Q+E(e) (2.40)
and by the Wielant-Hoffman Theorem [17]: ”\/Qn -V (s)H —0 as ¢ >0 Therefore, as

g —0:

Va(e)=h|=

Thus as ¢ — 0, the last singular value of the SVD of @ is close to zero. As described

Vi (8) ~Vin +Vgn —h| >0 (2.41)

above, the corresponding singular vector becomes close to h. (see[8]). Thus, ® startsto
exhibit rank deficiency as € — 0. This completes the proof. Based on the theorem, we

introduce the identification algorithm.

Simulation testing

Using the same Wiener model as in the previous simulation (see Figure 5 and

Figure 6) the following algorithm was simul ated:

1. Collect aset of y(k) and corresponding ¢(k) for k=12,...,N
2. Construct matrix ®(i,i,,...,i,,) of ¢(k) for k=12,...,M corresponding to

ly(k)| <& . Notethat M <N
3. Calculate SVD of @iy iy,....i\ ) =U (£)2(e) Vi), Vs (€),....V, (€)'

4. Define h= 1V, so that the first non-zero element of his positive.
Results of an average of 10 Monte Carlo runs of the algorithm are shown in Table 3. The

estimation error is defined as MSE = ||h—h||. Note that at the top of each column the
variable ¢ ischosen differently for each SNR. A simulation that varied ¢ and monitored

M SE was run to determine the best ¢ for afixed N and SNR. The ¢ that resulted in the
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lowest M SE was simply read for the graph in Figure 9.
There is a practical concern with the size of M, the number of rows in

D(iy,iy,...,1y,) . AsM gets larger and larger, computer hardware configurations can run

out of memory and/or take an excessively long time. To alleviate this problem, & should
be as small as possible consistent with low MSE, as demonstrated in Figure 9. Note that
for some of the entries in Table 3, M is limited to 900 to avoid a memory overrun
problem.

The idea behind this algorithm is to use local data near y(k) =0 to identify the

linear part without interference from the unknown nonlinearity. In fact, measurements

corresponding to | y(k) |> ¢ are not used. From the theorem, h~h if ¢ is small and

further h— h as ¢ — 0 at least in the absence of noise. A caution should be noted. The
algorithm throws away all data observed with magnitudes larger than ¢ . For smal ¢,
fewer datais retained to construct the estimate. Therefore, it takes a much longer time to
collect the same number of data useful for construction of the estimate for asmall ¢ than
alarge ¢ . Observe from Table 3 that for the smallest £ =0.016, N = 20000 is required

to collect M = 421 rows at SNR = 40dB. Thus considerable datais discarded.

N SNR = 5dB|SNR = 10dB|SNR = 20dB|SNR = 40 dB
=01 ¢ =0.046 ¢ =0.041 ¢ =0.016
MSE M MSE M MSE M MSE M

5000 |0.1237 | 501 0.092 | 272 0.028 | 266 0.0068 | 106
10000 | 0.0952 | 900 0.066 | 549 0.021 | 536 0.0046 | 211
20000 | 0.0946 | 900 0.054 | 900 0.016 | 900 0.0034 | 421

Table 3: FIR single point simulation results
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Figure 9: Variation of estimation error with &, N=20000

The choice of ¢ is reminiscent of the choice of the bandwidth in kernel
identification [13, page 20]. Kernel estimation attempts to estimate the output of an
unknown function for a given single input point. Output values are weighted by the
distance between their corresponding inputs and the given input. The output points that
correspond to inputs very close to the given input are given the highest weight. Thus a
neighborhood of inputs and corresponding outputs averaged is formed. The size of the
neighborhood is controlled by the kernel “bandwidth”. A large bandwidth results in a
large neighborhood of output points averaged and a small variance. However, because
the set of points in the output average is more likely to be distributed asymmetric with

respect to the true output, alarger bandwidth can result in alarger bias.
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In this situation, larger ¢ results in many more sample vectorsin ®(i,i,,...,i,, ) .
However, because the shape of the unknown nonlinearity does not have to be symmetric
around the origin, there is a possibility of introducing bias in the estimate. The SVD
produces the best estimate of null space basis vector h —V, () when the sample vectors
landing inside the cones in Figure 8 are symmetrically distributed around the center axis
of each cone. A larger ¢ leading to alarger cone solid angle increases the possibility of
asymmetry and bias.

Thus increasing ¢ tends to reduce the variance but at the same time to increase

the bias. The best choice isto balance between the bias and the variance.

L ocally monotonic nonlinearities

For quadrant a priori information, Assumption 2.1 defined quadrant conditions on
the nonlinearity. For single point a priori information, Assumption 2.3 replaced quadrant
conditions with a requirement for continuity around a single known point. In this section,
the requirement is local monotonicity of the nonlinearity.

Assumption 2.4:

Assume there exists an interval f<f<M and within the interval
f(x)e[i,f_], f(.) iscontinuousand f(x)= f(x,) < X = X,.
Clearly, f(-) ismonotonicif y= f(x)e[i,f_]

Now define:

w(i,1)=¢0)-6())

. . . : : (2.42)
2(i, ) = y(1) = y(j) = £ (x(1)) = £ (x(}))

Note that because of linearity, v (i, j) =¢(i) —¢(j) can be considered an input to
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the linear system and z(i, j) can be considered the corresponding valid output. Notice

that if 2(, j) = y(i) - y()) = T (x(@)~ f (x(})) =0 and f(xD)e| £, ] f(x(D) e f,F]
then we have x(i)—x(j)= 0. By collecting pairs of input vectors ¢(i), ¢(j) that

correspond to outputs whose difference is zero, we can cast identification of h under the
locally monotonic prior information into identification under point prior information.
Consider that w in (2.42) can be considered equivalent to ¢ in Lemma 2.1. Thus, we
can identify h by selecting pairs of ¢(i), #(j) whose difference makes the output
difference close to zero. Previously derived results can be used to show that our modified
input sample difference matrix and output difference vector can uniquely identify h. The
following theorem helps explain why locally monotonic system identification is possible.

Theorem 2.4:

Consider Assumption 2.4. Further assume that the input samplesu(k) arei.i.d.
(not necessarily Gaussian) and the probability density dunction of y= f(x) is
positivein an interval f(x)e[i,f_] Then:

The first claim is that unknown coefficient vector h is identifiable if and

only if there exists index sequences 1<i <N and 1< j <N for m= 12,...,K

=l =

so that (i), y(j)e[ f,T] and z(i,j)=y()-y(j)=0 for I=1.. .k

In  addition, the corresponding matrix  W¥(12,...,k) satisfies:

¢" (i) -9 (jy)
rank W(1.2,....k) = rank | ? ('z)qu U2) | _n-)

" (i) =" (i)
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Secondly, for any small & >0, with probability one as N — o, there

exists two subsequences. ¢(i,) and ¢(j), for I=1...,n such that
F(x(), fx(j) el f.7] and HEOECIDIES and:

#7047 (J,)
87 () 97 (Jx) | _

rank ¥(1,2,...,n) =rank n

¢T(in)—.¢T(J'n)

Finally, the matrix W¥({2,...,n) can be written as
¥(L2,...n)=Q+E(¢) for some Q and E(¢) where rank Q= (n-1),
independent of ¢ and E(¢) > 0 as € »> 0. Further, let the SVD of ¥(1,2,...,n)
be: W(L2,....n) =U(e)2(e)[Vy(e), Vs (e).- V()] =Q+E(s)  Then, modulo =+
sign: |V, (e)—h| >0 as ¢ —>0.

Pr oof:

The proof is a straightforward externsion of the results derived for single point a

priori information. In the proof of Theorem 2.3 replace ® by ¥, x(k) by x(i,) —x(},)
and y(k) by z(i,, ) =y(@,)-Yy(},). Asin the previous section, the result is that as
N — oo, there are guaranteed to exist n rows of ¥ such that |f(x(i|))— f (x(jl))| <& and

at thesametimerank ¥ is (n-1).
Indexes i, and j, have no particular order, however they index pairs of input

sampl e vectors that correspond to zero difference outputs:
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w' (@) ¢' (i) —¢" (i) X(i;) = %(J,) y(i,) = y(iy) 0
w2, Kh= v'(2) he ¢ (i) - 9" (i) he X(;)=x(J;) | _| Y(.)-y(i,) | _| O
y' (K) ¢T(ik)_¢T(jk) X(i ) = x(J,) y(i,) = y(i,) 0
Figure 10 shows asimple illustration of this algorithm. Thetop graph, y(k),isa

small record of output samples. The center graph, ys(k), is the same record sorted

lowest to highest in magnitude. Note how the sample indexes get mixed up. Finally the
bottom graph, y«(k), is the result of two-point differencing ys(k). In the bottom graph

four differenced samples are lessthan ¢. The corresponding input sample vectors are:

) ¢ (i5) = ¢" (J;) X(ig) =x(Js) | [ ¥(is) = y(Je)
v (@) |, _| ¢7(2)=8"(s) |, _ | X(2)=x(Js) | _| ¥(i2)=y(is) |
v (9 ¢ (i) —¢" (o) X(i0) =X(o) | | ¥(ixo) = ¥(Jo)
v'(4) " (i) -¢" (i7) X(i,)=x(i7) ) \ ()= y(i7)

¥(1,2,3,4)h=

M M M M

Assumethat n= 4. If ¢ issmall enough and rank W (1,2,3,4) is3 or 4, then the
SVD can be used to identify h.

Based on the above theorem, we can define the identification algorithm to be used
for locally monotonic a priori information on the nonlinearity. The next section presents
simulation results. An important simulation observation is that the locally monotonic a
priori information seems to perform better than the single point a priori information
algorithm. A reasonable explanation is that the locally monotonic algorithm makes use
of data in the entire monotonic output range whereas the single point algorithm uses data
as close as possible to zero. If, for example, the entire nonlinearity is known a priori to
be monotonic then outputs y(k) and corresponding input sample vectors range over the
entire nonlinearit as long as their respective difference is zero. Contrast this with the

single point algorithm where only outputs near the origin are useful.
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Figure 10: Example of sample collection for locally monotonic algorithm
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Simulation testing

Using the same Wiener model as in the previous simulation (see Figure 5 and

Figure 6), the following simulation steps were implemented:

1.

8.

Collect aset of y(k) and corresponding ¢(k) for k=12,...,N
Sort the y(k) from least to greatest, result is y, (k).

Construct @ (iy,i,,...,iy) correspondingto y, (k).

Construct Y, (k) by differencing adjacent points of y, (k).
Construct @ (i, i,,...,1y ;) by differencing rows of @ _(i,,i,,...,iy) .
Construct @ (iy,is,....iy ) corresponding to |y, (K)| <&

Calculate SVD B (ip ...y ) =U ()2(e) V(&) Vi e).... Vi ()]

Define h= 1V, so that the first non-zero element of his positive.

Results of an average of 10 Monte Carlo runs of the algorithm are shown in Table 4. The

estimation error is defined as MSE = ||h—h||. Note that at the top of each column the

variable ¢ ischosen differently for each SNR. A simulation that varied ¢ and monitored

M SE was run to determine the best ¢ for afixed N and SNR. The ¢ that resulted in the

lowest M SE was simply read for the graph in Figure 11.

As previoudly discussed for the the single point algorithm simulation, as M gets

larger and larger, computer hardware configurations can run out of memory and/or take

an excessively long time. To aleviate this problem, ¢ should be as small as possible

consistent with low M SE, as demonstrated in Figure 11. Note that for some of the entries

in Table 4, M islimited to 900 to avoid a memory overrun problem.
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Table 4: FIR locally monotonic simulation results
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Figure 11: Variation of estimation error with ¢, N

This agorithm seems to perform better. One explanation is that this algorithm

utilizes the data y €[-0.5, 0.5] and the previous one only uses the data y close to zero.

Simply put, more data is alowed for this algorithm than the previous one and thus the

effect of noisesis averaged out more for a better estimate.
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CHAPTER 3
IR LINEAR PART IDENTIFICATION

This chapter shows how the impulse response of the IIR linear part of a Wiener
system may be identified using a carefully defined set of minimal a-priori information on

the nonlinear part.

Problem statement

For the IR case, the Wiener system linear and nonlinear parts are described by

G(2) =Y h()z"
y(k) = f(x(K)), k=12,....N

(3.1)

respectively. The problem discussed in this chapter is to estimate the unknown transfer
function G(z) based on the input u(k) and the output y(k).

The linear part G(z) is assumed to be stable so that |h(i)<KMA' for some
M <o and O<A<1. No order information on G(z) is available, unless otherwise
specified. The input, internal signal and output at time k=0,1,...,N are represented by
u(k), x(k) and y(k) respectively. The internal signa x(k) is unavailable for
identification. The nonlinearity is unknown but bounded for bounded inputs. No
structura apriori informationon f (-) isassumed.

Because of embedded scaling ambiguity in Wiener systems, either the linear part
or the nonlinear part has to be normalized for identification purpose. It isassumed in this

chapter that:

[ =3 heG) =1 (32)
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Where h=(h(0), h(1),...)" is an infinite dimensional vector representing the impulse
response of the linear part. Further, it is assumed that the first non-zero entry of h is
positive. All these assumptions are standard to guarantee identifiability. Throughout the
paper, it is also assumed that the input u(k) is a bounded independent identically
distributed (i.i.d.) random sequence and its probability density function is positive over
an interval [-a, a] for some O<a<1. No specific distribution on the input is needed
and the actual distribution could be unknown. Clearly, al the signals u(k), x(k) and

y(k) are bounded because of the stability and boundedness of the input.

The goal of identification is to determine an estimate G(z) = iﬁ(i)z’i of G(2),

i=0
based on the input-output data up to time N with little a priori information on the

unknown nonlinearity f (-), specified later in subsequent sections, so that:
= [ Be”)-6(e”)F do—0 (33)
2
as N — oo in some probability sense, preferably convergence with probability one. Note
again that no order information on G(z) is available. Now, observe that if the estimate

G(z) isstable, then:

2

[n- ﬁ||2 _ Zi;|h(i) _ ﬁ(i)|2 - % j 6(e)-G(e”)[ do (3.4)

where h= (ﬁ(O), ﬁ(l),...)T is the impulse response vector of the estimate G(z) . Thus, the

identification problem is equivalent to finding h of h sothat h—h. Now, given a

positive integer n, define:
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h, = (h(0),h(d),...,h(n-1))"

oo . (3.5)
A = (h(0),h(),...,A(n-1)"

Because of the stability assumption, ih(i)2 —1 , we have ih(i)2 —0 as n— w.

i=0 i=n

Thus h—h if andonly if A —h, as n— . Further, | h -1 implies

e S RN oo
The second term goes to zero as n — o« and therefore, as n — oo
Hﬁ—h”»Oc»HﬁW—theo@H&—”E—”H—m @)

What we have to do is to identify the normalized first n taps of the impulse response of
the unknown linear part. In short, to overcome the problem of unknown order, we find

the impul se response.
Single point a priori information

In this section we consider identification of the linear part with a priori

information f(xo):yO on the unknown nonlinearity for some x, and vy,. For
smplicity, x, and y, are assumed to be at the origin.
Assumption 3.1

f(x)=0<x=0 and f(-) iscontinuousin the neighborhood of the origin.
The condition is based on the local information f (0) =0 however it is stronger
than the local point condition f(0)=0. Note that f(x)=0=x=0 provides some

global information on the nonlinearity since no other values of x could lead to f (x) =0.
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Becauise no other a priori information on the unknown f (-) is available, al the
observed outputs y (k)= 0 do not reveal anything about their corresponding inputs x(k)
or f(:). In other words, theoreticaly only the outputs y(k)=0 together with

corresponding inputs u(k) are useful for identification. Practically, however, y(k)=0
is unlikely to occur, especially in the presence of noise. A practical identification

algorithm is based on the hope that, by the continuity of f () in the neighborhood of the
origin, al the data y(k)~0 imply x(k)~0 and these data result in an estimate h, close
to h,/|h,||. Thusthe analysis contains two parts. The first part is to show that h, /|h,||

can be identified if there are enough data available under the constraint y(k)=0. Then
we will show that with the data set |y(k)|<& for some small &>0, the obtained

estimate is a continuous function of ¢ and convergesto h, /|h,| as & - 0.

For each n, consider afictitious FIR system:

u(k)
1 u(k-1)

k) =
SNTY

(h(0), h(2),---,h(n-1)) (3.8

u(k—n+1)
[
#n (K)

where h, =(h(0),h(2),---,h(n-1)" #0 is automatically satisfied for large n because
|n| > [n|=1. Given input-output data set {4, (k), y(k)}. Chapter Two showed that
h,/|h|| is identifiable for this fictitious FIR linear system based on the point a priori

information f (0)=0 if and only if there exist some 1< p, < p,<--<p <N so that
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X(p)=x(p,)=--=x(p,)=0 (or equivalently y(p,)=y(p,)=--=y(p)=0 and the

corresponding matrix ¢( p,, p,...., ) satisfies:

(p2) =n-1. (3.9

¢ (Py)

%/_J
D(py, Py Pi)

This is because ®(p, p,.....p) satisfying (3.9) has a one dimensional null space
spanned by any scaled versioned of h,. Chapter Two showed that if:

(P P P) =UZ (V.. V,) (3.10)
is the singular value decomposition (SVD) of ®(p, p,,...,p,) then it follows that
V,=h/|h| modulus + sign. Therefore, h,/|h,| is identifiable from the SVD of
O(p, Py, p) fordata y(p,)=y(p,)=--=y(p)=0.

Now we are going beyond the FIR identification of Chapter Two and attempting

to identify an IR linear part of a Wiener system. Writethe IIR system as

x(k) - i h(i)u(k —i) = h.¢, (k) (3.11)
and also define:
z(K) =[x(k)—§h(i)u(k—i)]/ I, lI= ¢n(k>”[}*n—” (312)

If z(p,)=2(p,)=--=2(p,)=0, the same conclusion discussed above applies. Making

use of the fact that, for a stable linear system, largen, A2 <1 and constant M resultsin:
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> h(i)u(k—i) < MA" =0 (3.13)
>

i=n

we conclude that y(k)~0 implies z(k)~0 and also x(k)~0. The question is if the

SVD of ®(p,p,....P,) Wwill provide a vector V, that is close to ﬁ when ¢ (as
defined in the previous chapter) is small but not zero. First, some preliminary work.
Given n, define the orthonormal basis functions. g,e,,...,e,, and %:ﬁ in

R"  Asshown for n=3 in Figure 8, construct a truncated cone C, around each g for

i=12,...,n asfollows. Fori=12,...,n-1 werequire:
e @0<gg||¢||g1 (3.14)

Given [-a,a] for 0<a<1 is the interval over which the input probability density is

positive. Now, if Z(¢, €) isthe angle between ¢ and e, , in addition to (3.14) we define

foreachi=12,..., n-1:

j=i
lcos(£(.€)))| = 3 (3.15)
< if i
9(n-2)

\Y4
© | oo
=

For i =n werequire:

$eC, = 0<|g| <e(n) (3.16)

\Y4
©| o
=
Il
-

lcos(£(¢.€)))| = ) (3.17)
. .

9(n-2)

www.manaraa.com



48

Where Vne(n) >0 as n— . If ¢ € C, we have:

(8.6)] =¥} I cos(£(p.e)) [ﬂj N C P
<g i=n
and similarly for ¢ €C., i=12,...,n-1:
{31850
(9.)|=[l[e, | cos(2(s.€,)) = 2 9a ? (3.19)

<
9(n-2)
Note that for (3.15) to (3.19) we need n>2; a practical case for an FIR filter.
Recall the definition ¢, (i;) = (u(i;),u(i; —=2),...,u(i -n+1))". Write each ¢,(1;) interms
of orthonormal basis functions g :
6. () = B8 + B8 +...+ B, (3.20)

B, istheprojection of ¢,(i;) on . Now, for some 1<i, <i, <...<i <N, wehave:

DOh. . _.
W) (a6 | g s e
N 1 R T : = 5t Rl e,
X(in) ¢r-1r(|n) ih(|)U(| —|) ﬁn,l ﬂn,n QI

R(il """ in)

(3.21)
ﬂl,l t ﬂl, n-1 T ﬂl,n
SRR :
ﬁ n-11 7 ﬂ n-1,n-1 QI ﬂ n-1,n
ﬁn,l ﬂn,n—l . ﬁn,n

Q E(e)

Lemma 3.1:

Consider the Wiener system under Assumption 3.1. Then we have:
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Firstly, for any given large n and &£(n) satisfying \/ﬁs(n)—>0 as
n—>oo, with probability one a N-—->w, theae exists a
sequence  of ¢n(ij) for j=12,..,n so that |[y(i;))Ke and:

¢ (i)
¢ (i,)

rank @(i,,...,i,) = rank >n-1

¢a (i)
Secondly, the matrix ®@(i,, ..., in) can be written as @(i,,...,i,) = Q+ E(¢)

for some Q and E(£), whererank Q =n-1 independent of & and |E(&)|— Oas

£ 0. Further, let @(i,,...i.) =U(e)Z(e)(V,(£).V,(e),....V. (¢))" be the SVD of

®(iy, ...,i,). Then, modulo + signs,

I, 1

%/n(s)— h H—)O as n— .

Pr oof:

The proof of the first part is essentially the same as for the FIR case in Chapter
Two by noting |R(i,,...,i,)]| >0 as n— .
To show the second part, consider a submatrix asin (3.21):

ﬁ1,1 ﬂl,n—l
S : (3.22)

ﬂn—l,l ﬂn—l,n—l
By the construction of the cones C. for i=12,...,n—1 and the definition of ¢n(ij), it

follows from (3.19) that for the submatrix of (3.22):

a

-2 i # ] (3.23)

|ﬁii|zga1 ‘ﬁ. ‘ <

www.manaraa.com



50

Thisleads to:

1] & e 4 1(2(n-2a) 4_ 1 3
) —— |+ | >—a—-——| ————— |=—a—-—-a=—a 3.24
il 2{j;¢i‘ﬁj" j%‘ﬁ”‘} 9 2{ 9(n-2) j 9 9 9 (324)
By the Gershgorin Theorem [23] on singular values, the right side of (3.24) is dso a

lower bound on the smallest singular value of (3.22). Thus the singular values of the

above submatrix (3.22) satisfy:
3
0'12622...26n_12§a (3.25)

Independent of n. Further, by the usual definition of orthonormal basis vectors we have:

Y 01 --- 0
% leena=|, L (3.26)
e, OO0 --- 1

To show that rank Q=n-1, we write Q as the sum of the submatrix (3.22) and a

perturbation:
S AN R
Q= s B % o o en (327)
0o - 0 Boi = Bana
Taking note of (3.26) and also:
Boal SEreis|Bona <€ (3.28)

We have from the Widandt-Hoffman Theorem [8] for singular values that, for

large n, thefirst n—1 singular values of Q satisfy:

alzazz---anlzga—o(\/ﬁg)z a (3.29)

©OIN
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Observe from (3.27) that Qh, =0 because h, L g for i=12,...,n-1. This
implies that the last or smallest singular value o, =0 and rank Q =n-1 for al n.
In addition, |B,; <¢implies |E(¢)|=0(Vne) >0 as n—o. Now define
Q=UZ(V,,...V.)" and:
Q+E(e) =U(e)Z(e)(V,(e),.... V. (&))" (3.30)
It is clear that h /|| h [=+V, and what is left to show is that V,(¢) =V, when n gets

larger. To thisend, again by the Wielandt-Hoffman Theorem for singular values [8], the
gap between the smallest singular value and the second smallest singular value of the

matrix ® =Q+ E(¢g) isbounded below by:
2 1
0,,—0,=0,,2 9 a—-0(/ng) > 9 a (3.31)

Now, we apply aversion of the Wielandt-Hoffman Theorem for singular vectors [8]:

O(/ne) y O(/ne)

sin(£(V, (£).V,)) < < 0 3.32
(£, (€).V,)) (G, ,—0.)—O(/ne) ;a—O( \/ﬁg)é (332
as n—>o. Since |V,|=|V,(¢)|=1, the conclusion V,(¢) >V, =”::—” follows. This

compl etes the proof.

Theorem 3.1:

Let ﬁn = (ﬁ(O),...,ﬁ(n—l))’:iVn(g) be the estimate of N so that the first non-

b

zero entry is positive and G(2)=) h(i)z". Then, as n-— o,
i=0
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1 % : A2

—HG(e‘”’)—G(eJ“’) do — 0

2r <,

Proof:

Theorem 3.1 isadirect consequence of the above Lemma 3.1.

Based on the results we can collect the data  set
ly(i) e, |y(,) Ke,...|y(i,) e sothat rank ©(i,,i,,...,i,)>n-1. Then, the SVD of
@(i,i,,...,i,) provides the estimate hn =V._(e) modulus £+ sign. A problem isthat only
data at time index iy, i,,...,i, are used and all other datais discarded. Thisis not efficient

and in fact is not robust in the presence of noise. An efficient way is to use al the data

| y(k) < ¢ and the corresponding matrix ®. The analysis as discussed before carries

over with no or minimal modifications. However at the same time, since more data is
used, the average effect of the noise is reduced making the identification algorithm more
robust. We are now in a position to introduce the identification algorithm based on point

apriori information.

Simulation testing

Consider the system shown in Figure 16 under Assumption 3.1. The following
are the steps of a practical identification algorithm with point a priori information
f(0)=0:

1. Collect data u(k)'sand y(k)'s, k=12,...,N.

2. For each n, construct a submatrix @(i,i,,...,i;) of ®(,2,...,N) by deleting k's
row if | y(k) |> £ , where vne >0 as n— .

3. Caculate SVD O(i,,....i,) =U ()=(e)(V,(&),... V. (&))" .
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4. Define ﬁn =1V (&) sothat thefirst non-zero element of ﬁn is positive.
A nil ~ .
5. Set G(2)=) h(i)z".
i=0
Then, from the lemma and theorem, for each n, h, >h/[lh || as N — .

Further, as n gets larger and larger, h1 —h and G(e'”) - G(e"®) in the integral least
squares sense.

We comment that in the algorithm, the choice of ¢ is not uniqgue. Small ¢
discards more data and results in fewer data to construct the estimate. Thus, it takes a
longer time to collect the same number of data useful to construct the estimate for a small
¢ than alarge ¢. On the other hand, however, a large ¢ collects larger y(k) which
results in x(k) that is further from the neighborhood of zero. Clearly, this tends to
increase the bias and, at the same time, to reduce the variance because more and more
data can be used. So the choice of ¢ is to balance the bias and variance which is
reminiscent of the choice of the bandwidth in kernel identification [13]. The ideais to

use local data near y(k) =0 to identify the linear part without interference from the

unknown nonlinearity. Of course, preferably, any choice of ¢ needs to be tested on a
fresh data set for validation purpose.
We now provide a numerical simulation. Let the linear part be an 4th order

system

0.76162" +0.6160

G(2) =
(2 z*+0.22322 +0.41

(3.33)

and the nonlinear part be a non-continuous, non-symmetric and non-monotonic

nonlinearity shown in Figure 6:
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0.5x-0.2 x<-0.2
y=1f(x)=9 12X -0.2<x(k)<0.8 (3.39)
0.3x+0.5 x>0.8

The input u(k) isi.i.d. uniformly in [-1,1] and Gaussian noise is added to the outpuit.
For this IR case, the estimate is defined as h= (h(0),...,.h(n—1),0,0,...)".
To demonstrate the performance of the identification, the agorithm has been

simulated for a number of SNR levels and various choices of thresholds ¢ and data

length N. All the results are the averages of 10 Monte Carlo smulations. Table 5 shows

the estimation error MSE :Hﬁ—hH for various ¢, N and SNR, with n =30. Similar to

previous simulations, Figure 12 was used to find good settings for & .
Figure 13 shows the frequency domain match between G(e'”) and G(e*) for the

case of N = 20000, SNR = 20dB and & =0.066. Most of the mismatch is in the stop

band null. Thisisdue to the error sensitivity of the singularity associated with the null.

N SNR = 5dB|SNR = 10dB|SNR = 20dB|SNR = 40 dB
¢=0.071 ¢ =0.071 ¢ =0.066 ¢ =0.021
MSE M MSE M MSE M MSE M

5000 |0.3278 | 351 0.1567 | 410 0.0481 | 420 0.0153 | 131
10000 | 0.2311 | 704 0.0997 | 802 0.0307 | 818 0.0092 | 264
20000 | 0.1898 | 900 0.1048 | 900 0.0314 | 900 0.0064 | 526

Table5: IR single point apriori simulation results

Choosing ¢ based on Figure 12 is an attempt at optimization. Using Figure 14,
thisis aso donein the next section on locally monotonic apriori information. A
comparison of Figure 13 and Figure 15 reveal s the performance enhancement obtained by

the locally montonic technique.
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Figure 12: Variation of estimation error with ¢, N
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L ocally monotonic nonlinearities

The idea of point a priori information is that though there is no other information
about the nonlinearity, data in the neighborhood of origin could be used to construct an
estimate because the knowledge about the nonlinearity around the origin is known
locally. In this section, we extend the idea to a case where no point a priori information
is available but the nonlinearity is assumed to be locally monotonic. More precisdly, it is
assumed that:

Assumption 3.2:

There exists an interval —o< f < f <o and within the interval f(x) [ f, f],
f () iscontinuous and:

F(x)=f(0) =% =% (3.35)
Notice that the assumption actually carries some globa information on the

nonlinearity. Let f(x)=f and f(X)=f. Then, Assumption 3.2 prevents the
nonlinearity from taking any value between f and f anywhere outside of the range

(x,X). Clearly, f(-) ismonotonicif y=f(x)e[f,f].

Now, define:
20, §) = x(3) - x(J)
3.36
vali D)= ()~ (1) (330
It iseasily verified that:
26, §) =Wy, i, )+ 3 h0)(u -1 ~u(j 1) (337)

This equation is reminiscent of (3.12) and is a key for identification based on point a

priori information. Note from the monotonic assumption:
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y()-y(j) = £ (x(1)) - £ (x(})) = 0= x(i) =x(j) < z(i, ) =0 (3:39)
And also:

[ f(x() - f(x()) e =Ix(@)-x()) <& (3:39)
for small ¢, thanks to the continuity of f, if ¢ issmall enough. Therefore, by identifying
z(i, j) as x(i) and w (i, J) as ¢,(i), everything developed for point a priori information
in the previous section can be carried over here.

Theorem 3.2:

Consider the system shown in Figure 16 under Assumption 3.4. Assume that the
probability density function of y = f (x) ispositive in theinterval [Lf_]. Then,
Firstly, for any nand ¢ >0 so that Jne >0 as n— w, with probability
one as N —»> o, there exist two sequences vy, (i, ])=4,01,)-4¢,(j) and
|z, ) H () - y(j) < € and:
¢a (i) = ¢, ()
rank (i, j;,--d,, J,,) = rank : >n-1.
$a (in) =0 (i)
Secondly, the matrix ‘(i j,.-i,,J,) can be written as
WY(, jy,dyy J,)=Q+E(e) for some Q and E(g), where rank Q=n-1
independent of n and || E(¢)|—~0 as n— 0. Further, let the SVD of ¥ be

B0y, jpd ) J) - =U(€)Z(E)V,(€)V,(e),.V.(£))T . Then, modulus of + signs,

2
do — 0.

Vn(e)—iH 50 asn—»0 or equivalently —— j G(e) - Ge™)
b 2r >,

Pr oof:
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Theorem 3.2 isa straightforward extension of Theorem 3.1.

The identification algorithm where the unknown nonlinearity is locally monotonic

in[f, f] issimilar to the identification algorithm for single point a priori information.

Simulation testing

Consider the system shown in Figure 16 under Assumption 3.4. The

identification algorithm has the following steps.

1. Collect data u(k)'sand y(k)'sfor thosey(k) e[ f, f].
2. Sort out the collected datain a decreasing order: y(k,) > y(k,) >...> y(k )
3. For each n and ¢ with /ne >0, construct z(k,k.,)=y(k)-y(k.,),

v, (k. k.)=9 (k)-¢, (k,). Construct asubmatrix ¥ (i, j;,--i, j;) of ¥,

by deleting g'srow if |z(q,q+2) |> ¢ .
4. Caculatethe SVD W, (i, jy,enriys §1) =U (€)Z()(V, (), ...,V (€)'

5. Define ﬁn =1V (&) sothat thefirst non-zero element of ﬁn is positive.
o) nil A .
6. Set G(z)=) h(i)z"
i=0

We test the agorithm on the same example as in the previous section under the

same input but under the assumption that the nonlinearity is monotonic for | y|<0.7. As

before, all the results are the averages of 10 Monte Carlo simulations. Table 6 shows the

estimation error MSE=Hﬁ—hH for various N, SNR and ¢ with n=30. Similar to

previous simulations, such as those in Chapter 2 for a priori localy montonic

information, Figure 12 was used to find good settings for ¢. Finaly, Figure 15 shows
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40 dB

0.036

MSE

g
0.0028 | 853

0.0064 | 211
0.0043 | 431

20dB | SNR

0.0291 | 900

0.0591 | 244
0.0373 | 473
Table6: IR locally monotonic a priori ssmulation results

¢ =0.041

MSE

10dB | SNR

0.0924 | 857

0.1382 | 437

¢ =0.041
0.2074 | 211

MSE

5dB | SNR

A

the match between G(e') and G(e').

0.051
MSE

&

0.3864 | 228

SNR

This agorithm seems to out perform the one with point a priori information. One

explanation is that this algorithm utilizes the data y<[-0.7,0.7] and the previous one

only uses the datay close to zero.

10000 | 0.2678 | 444
20000 | 0.1641 | 899

5000
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Figure 14: Variation of estimation error with ¢, N
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Frequency response of unknown FIR linear system

m S5

s :

O |

2] |

c |

o I

Q. |

) 10 |

e Y !
B Sl e R R S S e
-20 1 1 1 1 1 1

0 0.5 1 1.5 2 25 3
Frequency (normalized)

Figure 15: IR locally monotonic simulation result, SNR = 20dB, ¢ = 0.041

Quadrant a priori information

This section discusses Wiener system linear 1IR identification with quadrant or
sign apriori information. Two important assumptions are:

Assumption 3.1:
sign(x) =sign( f (x))=sign(y)
Assumption 3.2

1 2
7"+ B+ 4 B

"+, 2"+t

The order m of the linear part is known: G(2) = b

The unknown, G(z), and estimated, G(z) , linear subsystems are assumed stable
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The Wiener system output error configuration is shown in Figure 16. The entire

system operates on discrete time indexed samples. The top cascade of G(z) and

f (x(k)) is the unknown system to be identified. Only the input u(k) and the output sign

difference e(k) are measurable. All the other signals are unknown but assumed to be

bounded. We also require that v(Kk) isuncorrelated with u(k).

u(k) —_

x(k)

> G(2)

(k)

f(x(k))

f (%(k))

v(K)
T yK)
+
Jé e(k)
§(K)

Figure 16: Wiener IR system identification, quadrant only a priori knowledge

The stability of G(z) and G(z)implies that x(k) and %(k)are uniformly

bounded for al k provided that the input is bounded.

responses are such that, for a>0:

x(.) e

%() e

-y
L k=1

A(K) ag

—ai|h(k)| ai|h(k)|

ﬁ(k)‘_

The corresponding impulse

(3.40)

(3.41)

Assumptions on the input u (k) are exactly the same as for the FIR case. That is,
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u(k) isi.d.d. with a distribution continuous over an interval [—a,a] (the symmetry of a
isfor simplicity and not absolutely necessary).

As shown in Figure 17, the static nonlinearities f(x(k)) and f (%(k)) are
assumed to occupy only quadrants one and three. Quadrants two and four would aso
work. The idea s that quadrant knowledge gives us the sign of x(k) by observing the
sign of y(k). Thus a priori quadrant information about f (x(k)) and f(X(k)) makes

their exact shape irrelevant for this identification technique. Figure 17 shows some

acceptable nonlinearities:

y(k) y(K)

x(K) x(K)

Figure 17: Acceptable nonlinearitiesfor quadrant a priori identification

We define the linear system estimate as the solution to:

(BB Gy--6,) = arg min. (San(y(K)) - S gn(9(k)))? (342)

SableG(z) k=1

Considering the case where v(k) = O, for any value of N:

(BB Gy Grn) = (B B o+ ) = Z(sign(y(k)) —sign(y(k))*=0 (343
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And for at least one value of N:
(BB Gy G) # (B B oty 0t) = Z(Sign(y(k)) —sign(y(k)))* =4 (3.44)

Thus, there is one and only one global minimum achieved at the unknown but true
G(2). Thisimplies that solving the minimization gives rise to the transfer function to be

identified. Thekey to proving identifiability isto prove (3.44).

Let G(2) and G(2) be represented by their impulses {h(k)},_, and {h(k)]

k=1’
respectively?. Obviously, G(z) = G(z)or (,BAI'--,BAn a,---a,)#=(p,-B,o--a,) if and
only if h(k)# ﬁ(k) for some k. So what we have to show is that h(k) = ﬁ(k) implies

(sign(x(k)) —sign(x(k)))? = 4 for some k. Note that for n> 0, x(kn) and X(kn) can be

written as.
x(kn) =g, (kn) + 3. h(i)u(kn i) (3.45)
R(kn) = Ay g, (kn) + i h(i)u(kn—i) (3.46)
¢, (kn)=[u(kn) u(kn-1) - u(kn-n+1)] (347)

(3.48)

Thus the linear system output x(kn) is computed every n samples as a function of

the current block of samples, ¢n(kn), and the remaining ‘tall’ of samples

2 Subsequently, {h(k)}oki1 will be written simply as {h(K)} with the understanding that k — o0 in the
[IR linear system impulse response. .
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u(kn—n),u(kn—n-1),...,u(kn—n-o). Figure 18 shows a set of time indexed
samples [u(0)---u(kn)] with the first n samples of infinite impulse response h

convolved with input sample block ¢, (kn). The samples prior to ¢, (kn) are convolved

with the ‘tail’ of h. For a stable linear system, as n— «, the contribution of the ‘tail’

will be less than the contribution of the initial n samples.

-« h, >

u(0) u(kn-n+1)

Figure 18: Illustration of block sample processing

Observation 1:

Bocks ¢, (kn) and ¢, (jn) arei.i.d.if j=k. Also, ¢,(kn) isan ndimensional

random vector that assumes any direction with a positive probability. Moreover, thereis

anon-zero probability that | ¢, (kn)H >a/2.

Observation 2:
For stable systems {h(k)} and {ﬁ(k)} we require i h(k)* = i h(k)2=1 Thus
k=1 k=1

for arbitrarily small ¢ >0, thereisan n >0 such that for all n>n;:
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1> j h(k)?>1-¢ (3.49)

k=0
1> Y h(k)?2>1-¢ (3.50)

Observation 3:

For arbitrarily small ¢ >0, thereisan n, > 0 such that for all n>n,:
h(i)u(n-i)<e (3.51)

0
1=n

> R(i)u(n-i) < (352)

We are now in a position to prove identifiability.
Theorem 3.3:

Consider the Wiener system of Figure 16 under Assumptions 3.1 and 3.2 and the

. "anl "ZnFZ N
estimate G(2)=PZ P2 T P ived from (342). Then with

m A m-1 2
zZ +oz +ta,

N
probability one as N — o Z(sign(y(k))—sign(;‘/(k)))2 >4 if the coefficient
k=1

setsarenot equal, i.e. (B,---B. &,---d,) = (BB, o,
Proof:

Proof of the above Theorem is as follows. If for somek, {h(k)} = {ﬁ(k)} then the

angle Qzé(h, ﬁ) between the two infinite dimensional vectors hand h is greater than

zero. There aretwo cases: 0<6 <90 and 90 <6 <180 . The proofs for the two cases

are similar and we only show the first case.
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Figure 19: Angles between h,, ﬁ1 ¢, (kn)

Two additional observations are that for h=hand large enough block size n, the

impulse response inequality will be manifested in the finite dimensional vector:

h=h=h #h (3.53)

From the observations, there is a large (possibly unknown) n and a small (possibly

unknown) & > 0 such that:

8

> 22, [2(i

h|>1-¢,

g

i=n

kn—|

(3.59)
kn - |

Where |h| -1 and Hﬁ”—)l as n—oow. Alsoif h, >h and h —>h asn— o then it

follows that at the same time Z(m Fy) —>L(h, ﬁ) =0 . Although unknown his fixed, h
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and ¢, (kn) can exist anywhere in an n dimensional vector space. Thus given h and h
there exists a vector ¢, (kn) as shown in Figure 19 for large enough n. We do not know

0 exactly because we only have finite vectors h, and ﬁn However, because we can

observe ¢, (kn) and R, we define A(Hn,qsn(kn)):(%—%j. Because we cannot

observe h, we make the reasonable assumption that, with some non-zero probability:

(%+%)<4(m,¢n(kn))<(%+¥j (3.95)

Given the preceding assumptions, we can chose ¢ >0 such that the two

conditions below are meset:

O<e< g (1-¢) (3.56)

. 0
sin—
2

—2(1—8) sin% <—£<0 (357)

In (3.56) the right side goes to a positive value and the middle term goes to zero
as ¢ > 0. In (3.57) the left side goes to a negative value and the middle term goes to

zeroas ¢ —» 0 Thisleadsto the following equations:

g<%(1—g) sin%
(ﬂ' 9) 2¢
COS| ——— | >
2 2) a(l-g)
cos(L(ﬁn,gﬁn(kn))) > a(ffg) (359)

(1- g)@jcos(z(ﬁn,gzin (kn))) > ((1— g)(gn(a(lzfg)j s

h' g, (kn)> ¢
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In addition we have:
.0
sin—| <

—% A-¢) —€

(ﬂ' 0) —2¢

CoS| —+— [ <

2 4) a(l-¢)
-2¢

cos( (h,. 4, (kn))) 2]

ol gt cthaton-{o-of3) 25~

hh ¢, (kn) < —¢

(3.59)

Now from (3.54) we have:
(3.60)

Consider again:

x(kn) = hy ¢, (kn)+ Zh(l)u(kn i)
(3.61)
R(kn) = A1 g, (kn)+ Zh(l)u(kn i)

Since we showed the non-zero probability of h' ¢, (kn)<—¢ and hg, (kn)> ¢, it
is easy to see from the above and Figure 20 that x(kn) <0 and X(kn) > 0. Equivaently:

(sign(x(kn)) — sign(x(kn)))* = 4

. T (3.62)
= (sign(y(kn) —sign(§(kn)))? = 4

By a continuity argument, any vector close enough to ¢, (kn) will result in the same
conclusion as (3.62).

Now, from the observations above, the random vectors ¢, (kn) arei.i.d. with a
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non-zero probability that

¢n(kn)||z%. They assume any direction with a non-zero

probability. Therefore, for each k, there is a positive probability that ¢, (kn) produces
(3.62). More precisely, for each Kk, there is probability p>0 that

(sign(y(k) —sign(§(k)))? =4 if (B, B, & -d,) # (BB, oy-+-cx,). From the Borel

lemma, i(l— p)' <, we conclude with probability one as N — oo there is a k such
i=1

that (sign(y(k;,,)) - sign(f/(km)))2 =4. This completes the identifiability proof.

> Au(n-i)
hy ¢, (kn) Zh(‘)“(”—‘) AT, ¢, (kn)
- —g= I i = >
0

Figure 20: Number lineview of IR identifiability proof

The result presented above is actually weaker than its counterpart for the FIR case
in Chapter 2. For FIR identification not only does the minimization have one and only
one global minimum but aso there are no other local minima. In other words, the
objective function is a monotonic function of the angle between the estimate and the true

but unknown impul se response.

Simulation testing

Given the system in Figure 16 with the assumptions discussed, the identifiability

proof in the previous section tells us that there is only one global minimum at
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(Bl---Bn a,---a,)=(p-B,-a,). Forlarge enough block size n, any other setting

of the estimated parameters results in a non-zero error. Of course proving identifiability

is not the same as proving that the cost function used for identification varies
monotonically with some measure of the distance between (ﬁl“'ﬁn a,---a,) and
(B, B, o). Therelationship between impulse response and the transfer function

coefficients is highly nonlinear and complicated, even for the ssmplest one pole filter.
Simulation is used to demonstrate (but not prove) that an algorithm can be built around
the sign difference cost function.

A system identification experiment for IIR quadrant a priori information was set
up using the circuit of Figure 16 combined with the same quadratic cost function used in
the quadrant a priori information FIR caseg, i.e. (2.9). The nonlinearity was also the same
asinthe FIR case, see Figure 6. ThelIR linear system was a notch filter with coefficient

values from Table 7.

G(2) = B+ Bz +B,Z7
I+ Z v,z +a,Z2° +a,

= (3.63)

The frequency response is shown in the third subplot of Figure 24 and the lattice
structure used for implementation is depicted in Figure 21. Although there are severd
filter structures that could be used for simulation, the IR lattice was chosen because the

reflection coefficient solution is always a point in a hyper-cube with edges in the range

(-14,1) . Thus, as the algorithm searches, selected impulse response hypothesis can be

easily checked for stability. Thisisan important feature for an algorithm searching for an
IR system function. Continuous stability checking of direct form coefficientsis far more

complicated.
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Figure 21: L attice implementation of 1R notch filter
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Direct Form Coefficients Lattice Coefficients

Numerator Denominator Ladder Reflection

By 6.800e-1 a, 1.0 Vo 5.5757e-001

B, -7.495e-17 | @, 0 V1 -7.495e-17 ki | -3.269e-17

B, 5.508e-1 a, 2.223e-1 Vs 5.508e-1 ko, | 1.577e-1
a, -5.551e-17 ks | 6.670e-17
a, 4.096e-1 ke | 4.096e-1

Table 7. Simulation example, direct form and lattice coefficients

As described in [21], there is a direct correspondence between direct form

coefficients and lattice coefficients. After the minimum average mean squared error is

reached, the lattice filter coefficients can be easily translated back into direct form

coefficients.

The search procedure makes use of a similar genetic algorithm (GA) as was used

for quadrant a priori information simulation in Chapter 2. The GA is a carefully

organized zero-order iterative numerical search technique based on “Survival of the

fittest”.

The GA used here has an initial population of M estimates, (,[?1'--,[3n a,--a,) .
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These are represented by an equivalent set of M lattice filter coefficients sets
(A l?l---lzm), caled parents in GA parlance. As shown in Figure 22, the initia

population of M parents is chosen from the best of an oversized initial population of M*r
parents. The stability required by (3.42) was easy to impose by limiting the magnitude of
the reflection coefficientsto +1.

Some typical GA operating parameters are shown in Table 8. Publications, such
as [12] contain guidance on how to use the GA. This, as well as some ‘tweaking’ was

followed to choose the parametersin Table 8

Parameter: Vaue used | Description:

M 64 Number of parents

My 28 Number of high fitness parents

m varies Number of coefficients per parent

r 100 Initial population over sizing factor

N 48000 Number of samples per block

Gain 0.9t01.0 New parent = best parent + Gain* (Difference between
randomly chosen low fitness parents)

Map 04 High fitness reflection coefficients, Prob(mating)

Mup 04 Low fitness reflection coefficients, Prob(mating)

Table 8: Some GA parametersused for simulation

The simulation results using the GA for system identification and the parameters

from Table 8 are summarized in Table 9 below. The run time was 6 minutesin all cases.

N SNR=5dB SNR=10dB SNR =20dB SNR =40dB
MSE MSE MSE MSE

5000 0.152 0.101 0.046 0.012

10000 0.092 0.077 0.032 0.0079

20000 0.092 0.042 0.026 0.0086

Table9: IR quadrant a priori simulation results
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Oversized Random Initial Population:
Wr(1:Mr,1:m) = [Mr parents, m coefs]

Evaluate MSE of oversized initial population:
Er(1:Mr) = MSE (Wr(1:Mr,1:m))

Sort MSE (ascending order):
[Ers, Eri] = Sort (Er)
Ers = sorted, Eri = index

W(1:M) = Wr(Eri(1:M),1:m)

Actual population = lowest MSE initial population:

T = TimeLimit, Time = 0

-l
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-

Yes

l

Time>T?
No
Sort MSE (ascending order):

Report Wb, Eb \ [Es, Ei] = Sort (E)

End

Es = sorted, Ei = index
[
Sort Population to match MSE :
Ws = W (Ei,1:m)
\
Find the best (lowest MSE) parent:
Wb = Ws(1,1:m)
Eb = Es(1,1:m)
\
Generate parent random indexes:
Mi = ceil(Mkk*rand(1,M-MkKk));
Pi = ceil(Mkk*rand(1,M-Mkk));
\
k=1, j=Mkk+1

[
|

k=Mkk? Yes

No

Select high fitness parents to mate:
M = Ws(Mi(k),1:m)
P = Ws(Pi(k),1:m)
\
Select next child from [Mkk:M]
C =Ws(j,1:m)
Mate randomly chosen parent coefs:
Fori=1m
If(randn > MaP)
Ws(j,i) = Whb(i)+gain*(M(i)-P(i))

Else
Ws(j,i) = C(j)
End
End
| kek#1, j=j+1 |

Small Random mutation
added to high fitness
parents Ws(1:Mkk,1:m)
Coefs 1:m are mutated with
probability MuP

Figure 22: Flowchart of Genetic Algorithm used for simulation
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=64

=0.036552, Gain=0.99, N=48000, M

10dB, CoefMSE
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Figure 23: Genetic algorithm cost function reduction vs. time
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Figure24: IR quadrant a priori information smulation results, SNR = 10dB
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Although at 100dB SNR the GA gets very close to the exact answer, as the SNR
decreases, the noise puts a ‘floor’ on the cost function minimum because the decisions
made by the search process are always corrupted by noise and therefore less reliable.
Figure 24 is an example of a simulation results graph for SNR = 10dB. From the center
subplot in Figure 24, note how the transfer function zero at half the sampling frequency is
not as close to the true value as are the two poles. This is because singularities near the
unit circle are more sensitive to coefficient estimation errors. The effect on the stop band
is clearly evident in the third subplot. In this case, afrequency response plot reveals alot
more than simply listing the mean squared coefficient error. Finally, notice in the top
subplot of Figure 24 that most of the GA estimation work is done within 2 minutes. The

refinement produced by along run time may not be needed in a practical situation.
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CHAPTER 4
FIRLINEAR PART IDENTIFICATION WITH BACKLASH

This chapter shows how the impulse response of the FIR part of a Wiener system
with a backlash nonlinearity may be identified using a carefully defined set of minimal a
priori information on the nonlinear part. Backlash is called a memory nonlinearity
because the output depends on the difference between current and previous inputs.
Backlash is very similar to valve stiction, discussed in [31]. In general, nonlinear
ascending and descending functions result because the output responds differently when
the direction of the input changes.

The identification approach of Chapter 1 was to observe the sign of unknown
intermediate signal x(k) by processing output y(k) through sign function (2.2). This
chapter applies the technique of Chapter 1 to the identification of the FIR coefficients of
aWiener system with a more complicated output nonlinearity.

Severa papers have offered identification techniques for Hammerstein systems
with backlash nonlinearities. A Hammerstein system has the nonlinearity preceding the
linear block, i.e. the blocks are swapped relative to the Wiener system. Both [9] and [10],
written by the same authors, require a carefully contrived input signal for identification of
input backlash. Although [9] does not require any a priori knowledge of nonlinearity
points or structure, [10] requires the nonlinearity to have straight line borders. By
contrast, in [6] and [7] the input signal is only required to persistently excite (see [20],
page 412) the linear block. However, [6] requires backlash and hysteresis nonlinearities
to be described by only one parameter. To accomplish the one parameter description, the

nonlinear characteristics are limited to straight lines with slopes of zero, one or infinity.
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In [28] the input backlash nonlinearity of a Hammerstien system is described by a

four parameter model: [m, m, ¢, c,]. Here c, and m, are the ascending function

X-axis intersection and slope, respectively. Parameters ¢, and m, are the descending
function X-axis intersection and slope, respectively. This description would apply to
Figure 25 if f,(x) and f,(x) are straight lines. The linear filter numerator and

denominator parameters (see (3.1)) are concatenated to produce a parameter vector for

the compl ete system:
O=[m m c ¢ o - o, B - B] (4.1)

The recursive least mean squares algorithm (RLS) is used to compute an estimate for © :

O =agmind (y(k)-¢' (k)©) (4.2)

o k=1
At each estimation step, data vector ¢' (k) is updated with the best estimate of
intermediate signal x(k) . The authors of [11] applied the techniques of [28] to a Wiener

system with a four parameter output backlash function. They also added a convergence
anaysis. An advantage to the approaches of both [11] and [28] is that, unlike [4] and [5],
avery general input distribution is used for identification.

One additional paper that analyzes a Wiener system with backlash is [9]. The
author starts with the same four parameter description as [28]. In [9], a bounded
parameter approach is taken to identify the linear block parameters. A two step
procedure is used. The first step uses a multiamplitude square wave input sequence to
bound the parameters of the output backlash. The second step uses a pseudo-random
binary sequence (PRBYS) to estimate bounds on the intermediate signal .

To the author’s knowledge, this chapter is the first algorithm for identifying an
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output backlash Wiener system by observing only the output polarity. The technique
presented in this chapter extends the quadrant a priori information results of Chapter One

to the Wiener system with backlash.

Problem statement
In this chapter, the linear system in Chapter 2, Figure 1 is described by:

x(K) =[u(k),u(k —1),...u(k—n+D]h, k=12,..N 4.3)
#" (k)

Note that the length n only needs to be an upper bound if the exact FIR length is

unknown. The input u(k) is an independent and identically distributed (i.i.d.) Gaussian
random sequence. Parameter vector he R" is to be identified. As in Chapter 2 and
Chapter 3, the first non-zero element of h is positive and |h|=1. The internal variable

X(K) is assumed unknown and both x(k) and y(k) are assumed bounded for all k.

We say that the parameter vector h is identifiable from the input-output data set
{¢(k), y(k)}kN:1 if h can be uniquely identified from the Wiener system model and the data
set, independent of the unknown nonlinearity f(.). Equivaently, there does not exist a
different pair (ﬁ, f_) that would produce an identical input-output data set {¢(K), y(k)}kN:1

In this chapter we prove identifiability given a set of minimal a priori information on the
unknown f(.). A further question is algorithm convergence. In other words, can a cost
function be constructed that is monotonic with some measure of the distance between the
true and the estimated FIR coefficients? Thisis discussed in detail but not proven.

An example of a backlash function is shown in Figure 25. Backlash is called a

memory nonlinearity because the output characteristic is different for ascending or
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descending inputs; the output depends on the current and previous inputs. Backlash is
commonly used to describe the transfer of motion across gears. While the driving gear
switches direction, the driven gear has a period of non-motion until the driving gear

reengagesit. Backlash is unavoidable in mechanical systems that must change direction.

Ya

/fd (X)

fa(x)

-C,
!
\J

Figure 25: Backlash nonlinearity example

With reference to Figure 25, backlash is based on ascending and descending

function f,(x(k)) and fy(x(k)), respectively. These are unknown and can be different.

For k=1,2,...N and random input x(0) , backlash can be expressed as:
f(x(K) if - x(k)> £, (y(k-D)

y()=1y(k-1) if 7 (y(k-1)) <x(k) < £, (y(k-1) (4.4)
fa(x(k)) if  x(k) < f*(y(k-1))
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We start with the following set of minimum a-priori information:
Assumption 4.1:
1. The ascending and descending functions are monotonic and have no pointsin
common (i.e. they do not cross over each other).

2. TheX-axisintersection points C, and C, are known.

For ease of presentation and without loss of generality, weset C, =C, =C > 0.

| dentification approach

Consider the Wiener system inside the dotted box at the top of Figure 26. The
nonlinearity f (X(k)) isthe backlash function in Figure 25. Because the output can only
increase on the ascending function, sign(y, (k) =sign(y(k) - y(k-1))=1 indicates an
output on the ascending function. Similarly, because the output can only decrease on the
descending function, sign(y,(k)) =sign(y(k)—y(k-1))=-1 indicates a descending
function output:

sgn(y,(k))=1 = Yy,(k)>0 = y(k)=f,(x(k))
sign(yy(k))=0 = y,(k)=0 (4.5)
sign(y,(k))=-1 = y,(K)<0 = y(k) = f,(x(k))

From Figure 26 consider output y(k) and unknown intermediate signa

x(k) =¢" (k)h. For this description, consider that noise v(k)=0 The basis of the
identification  algorithm is that, for an ascending function output,

sign(y(k))=sign(x(k)-C)  and for a descending function  output
sign(y(k))=sign(x(k)+C).  Now consider the estimated intermediate signal

%(k) = ¢" (K)h, where h is an estimate of h. If h=h then, because the FIR linear parts
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have the same input, X(k)=x(k). In this case for an ascending function output,
sign(y(k))=sign(%(k)-C)  and, for a descending function  output,
sign(y(k)) =sign(%(k)+C). Using output y,(k) from Figure 26 we can detect when

h=h by the following error signal:

sign(y(k) +Vv(k))- sign(¢T (k)ﬁ—c) y,(k)>0
e(k) = 0 Ya(k)=0 (4.6)
sign(y(k)+v(K)-sign(¢" ()h+C) Y, (k) <O

| Wk, |
® | o k + K
u—-—i» > hiju(k i) S o) +®i L +Q B
l L )
- 7 Yy (K)
7D >
[ci “
n-1 X(k =
Lol S hiukeiy | T

Figure 26: Wiener system identification with backlash

Our goa in this chapter is to show that, for an ascending function output,

sign(y(k)) is equal to sign(x(k)-C) = sign(X(k)—-C) for al k if and only if h=h

and, for a descending function output, sign(y(k)) is equa to sign(x(k)+C) =

sign(%(k)+C) for al k if and only if h=h. Thus the error e(k) is zero for
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k=12,...N if and only if h=h. A cost function based on these sign differences is

referred to throughout the chapter:
18 2
Iy =—>(ek)?) (4.7)
N i

The first question is obviously the identifiability, that is are the above equations

based on signs sufficient to determine the unknown h? A further question is

convergence; is a cost function based on the mean squared error e(k)®> monotonically
increasing with 0 = A(h, ﬁ) ? The following analysis proves identifiability and discusses

convergence in detail. We focus on the ascending function, a similar analysis applies to

the descending function.

| dentifiability analysis
In addition to Assumption 4.1 we have:
Assumption 4.2:

Random input u(k) isi.i.d., Gaussian and zero mean.

A Gaussian input distribution is sufficient for identifiability.

If the output nonlinearity were static, asin Chapters 2 and 3, then with a Gaussian
input the results of [7] would apply and there would be nothing new to present. However
the Bussgang theorem does not apply to the backlash memory nonlinearity because there
is no ssimple way to calculate the proportionality constant. Although some input
distribution generality is lost, we gain the ability to handle a much more complicated

output nonlinearity.

Referring to Figure 27 and defining Hzé(h,ﬁ), the following development is
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easy to see:
2r =0+ + LPW
LPW=7-6
" (4.8)
n=/PWN+LPZL=1-0+,/LFPZ
LSPZ=0
And due to vertica angles, ZUPW =/SPZ=0. Therefore,

0>0< LZUPW = £SPZ >0. Thiswill beimportant to the devel opment below.
Theorem 4.1:

Consider the two dimensional system of Figure 1 under Assumptions 4.1 and 4.2.

A

For any unit vector h=h, with probability one as N — « there exist some

1<k<N sothat
sign(y(k)) = sign(¢" ()h—C) = sign(¢" ()h—C)

sign(y(k)) =sign(¢" (k)h+C) = sign(¢T(k)H+c).
Pr oof:

The identifiability proof has three parts. We prove identifiability with respect to

the ascending function, the same proof can be applied to the descending function:
1. We show that for any unit vector h= h, represented in a rectangular
coordinate space, there exist two regions with non-zero area such that for

#(k) in either region: sign(qST(k)h—C);tsign(qST(k)ﬁ—C). These are

called sign difference regions. Sign difference regions were first introduced in
Chapter 2.

2. We show that as N — o, some ¢ (k) will be in one of these regions with a

non-decreasing probability greater than zero.
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3. Finally we show that when ¢ (k) isin one of the sign difference regions there
isanon-zero probability that output y(k) will be on the ascending function.
Proof of part 1:
Figure 27 shows h and h as well as two tangents to a circle of radius C.
Tangent U isnorma to h and tangent ZW isnorma to h. The eguation for U is

¢" (k)h=C and the equation for ZW is ¢" (k)h=C . From thiswe conclude that:

#(k)eS = ¢"(k)h>C and ¢" (k)h<C

. (4.9)
#(K)e S, = ¢" (K)h<C and ¢ (K)h>C

Considering the ascending function (descending is similar) we will show that:

sign(y,(k)) =1and ¢(k) e § = sign(¢' (K)h—C) =+1and sign(qST(k)ﬁ—C) =1
A (4.10)
sign(y, (k) =1and ¢(k) € S, = sign(¢" (K)h—C) =-Land sign(¢T(k)h—C) =+1

When ¢(k) isinregion S,, x(k) and X(k) are both lessthan C and for ¢(k) in
S,, x(k) and X(k) are both greater than C. Thus, e(k) =0 for ¢(k) intheseregions.
Now, Observation 1 established that ZUPW = /SPZ =6 in Figure 27. Thus for

h= h both regions exist with area greater than zero.
Proof of part 2:

For the two dimensiona case considered here, Assumption 4.2 implies that joint
probability distribution f,, (u(k),u(k—1)) will be continuous and non-zero everywhere
inside a circle of radius r >C. Because the boundaries of S, S,, S, and S, are
tangent to acircle of radius C, the intersection of acircle of radius r >C with S and S,

will have probability greater than zero. In addition, due to the continuous input
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probability distribution, the angle of ¢(k) will also have some continuous distribution
from O to 2r. Thus, as N >, some ¢(k) will be in § or S; with non-zero

probability.

Q]

y

Figure 27: Sign differenceregionsfor backlash

Proof of part 3:
For the ascending function (descending is similar) identifiability is based on the
non-zero probability:

P{(¢(k) € S or ¢(k) € S) and (sign(y, (k)) =1)} >0 (4.11)
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Thisis equivaent to either of the next two equations:
P{(y(k) > 0) and (X(k) < C) and (sign(y,(k)) =1} >0 (4.12)
P{(y(k) <0) and (x(k) > C) and (sign(y,(k)) =1} >0 (4.13)
For sign(yd(k)) =1, output y(k) must be a point on the ascending function. To

guarantee this for some k, we show the non-zero probability of sequences
x (K, L) =[x(k—L+1),...,x(k)], where O<k <o and L<k, that force y(k) on to the

ascending function.
Unknown intermediate signal x(k) results from passing i.i.d. Gaussian signd
u(k) thru alinear system. Because x(k) is a stationary random Gaussian process at

constant time increments, we can calculate a probability density function for sequence

x(K,L), for example:

—%[A(k—LH),, A ALY, AR

F e Loty (A= LD, A(K)) = =N (4.14)

Here, 1 isthe covariance matrix of y(k,L). For atwo dimensiona (n=2) example:

1 hOh@ O o -0 0 0
hh(©) 1 hOh@® OO -0 0 O

p=| 0 h@®hO 1  hOh® -- 0 0 0| (415
0 o 0 0 - 0 h®NO 1

We can now analyze the probability in (4.12) or (4.13), above. Because the input and
intermediate signals are zero mean and ||h||:HﬁH:1, the variance of input u(k) will

determine the probability of x(k) >C = y(k) >0, see Figure 25. Thus, for a large

enough input power, it is reasonable to assume the existence of [x(k),y(k)] with
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x(k) >C andy(k) >0. We want to show the non-zero probability that y(k) is on the
ascending function. Thisis based on the following necessary and sufficient condition:
f.H(y(k=1)) < x(k) <o (4.16)
Note that y(k—1) may aready be on the ascending function. If so, the condition (4.16)
keepsit there. Dueto Assumption 4.2, the above constraint defines a nonzero probability
mass starting at f,*(y(k—1)) and extending to infinity. Thus, any output y(k) has a
non-zero probability of being on the ascending function. A similar analysis could be

carried out for the descending function.

From the first conjunction of (4.1) we have shown that for a selected y(k) >0,
there is a non-zero probability that y(k) — y(k—1) > 0. We still need to show the nonzero
probability that, for the same timeindex k, %(k) <C.

Referring to the previous discussion about the variance of zero mean stationary

input u(k) , it is reasonable to expect [¢(k)|>C for some k. (note that |¢(k)| < C is not

useful for identification). Also, we expect the angle of |¢(k)| will be continuous

distributed between 0 and 27 . The condition x(k) > C = y(k) >0 can beinterpreted as:
x(k) =l (k) | [Ih[l cos(£(¢(k),h)) > C = £($(Kk), h) < COS‘{%) =a  (417)

In Figure 3, SU extends from Zh-a to Zh+a. As shown above, ¢(k) on
U and within this sector will result in x(k)>C, y(k) > 0. Because of the continuous

distribution of the angle of ¢(k), this ¢(k) will be on Z with some positive probability

and, becauseitisin S, will satisfy X(k) <C. Thisconcludes the identifiability proof.

www.manaraa.com



88

The indentifiability proof can be extended to a higher dimensional case. Let h
and h be unit vectors in " for n>2. Consider that h and h span a plane in a two
dimensional subspace of R":

S(h,h) =[ah+ Bh:a, B eR] (4.18)

Let r(n),—7 <n <x denote the unit circle on this plane. Further, let r(0)=h

andr(0)=h. Without loss of generality, rotate the coordinate reference to line up

S(h, ﬁ) and r(n) with thefirst two axisin R". Assume there is arotation matrix T that

performs this transformation such that:

r (7) =[cos(n) sin(y) 0 0---0]

h =Th=r(0) =[cos(6) sin(d) 0 0---0]'
h =Th=r(0)=[100---0]'

¢, (K) =Tg(k)

(4.19)

Note that both ¢(k) and rotated input sample vector ¢, (k) are vectors of
stationary, zero-mean, i.i.d., Gaussian samples. Due to the rotation, ¢, (k) may be fully
represented in the two dimensional subspace spanned by h and h. However, recall that:

>A<(k)=¢,T(k)ﬁr =[u, (k)cos(8) u,(k-Dsin@@) 0 --- 0] (4.20)
By making x(k) and X(k) dependent on only the first two components of ¢ (k) we

force the problem into the two dimensional framework already proven:

%(K) =" (h=(T7, (k) T = ¢/ (KA
=[u, (K)cos(0) u, (k-Dsin(@) 0 - 0]

(4.21)
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Conver gence discussion

We have shown identifiability; that our identification approach has only one
global minimum h=h as N — . For convergence, the probability of ¢(k) in S or
S, together with the probability of being on the ascending (or descending) function must

be monotonic with 0<6 <2z . To study this, let us partition the output into the

following three events:

{sign(y, (k) =+1} = {x(k) > £ (y(k —1))} , Ouput on Ascending Function
{sign(y,(k)) =0}, Ouput Inbetween Functions (4.22)
{sign(y, (k)) =-1} {x(k) < fd’l(y(k—l))}, Ouput on Descending Function

DP
Dz
Dn

This represents a complete partition in that P( Dp)+ P(D,)+P(D,)=1 Now we define
the following sign difference compound event:

A={((y(k) >0) and (%(k) < C)) or ((y(k) <0) and ((k) > C))} (4.23)
What we would like to be monotonic 6 withis:

P(AD,)+P(AD,)=P(A|D,)P(D,)+P(A|D,)P(D,) (4.24)

The partition D = [Dp, D,, Dn} depends on:
1. The true but unknown impulse response h that determines joint probability of
pairs [x(k—1),x(k)] of intermediate samples. In general, samples in these
pairs are not independent because of (4.15).

2. Thevariance of thei.i.d. input samples u(k)

3. The shape of the ascending and descending functions
Thus, the sample by sample probability of events in partition D are impossible to

characterize without a priori knownledge of the above three items. Also the probability

www.manaraa.com



90

of events D ,D,,D, changes every sample because they depend on the output y(k-1).

The non-zero P(D,) hasthe effect of randomly zeroing y, (k) in (4.6) and nullifying the

contribution to (4.7) of ¢(k) occupying asign difference region based on 6 = £ (h, ﬁ) .

Another factor that greatly confounds the convergence question is that different
values of h result in different covariance between pairs of intermediate samples. Thus a

genera proof of convergenceis not possible for this approach.

Noise immunity enhancement

All of the preceeding analysis has assumed that noise term v(k) =0 in Figure 26.
In this case, (4.5) works well for indicating when output y(k) is on the ascending or
descending function. However, adding non-zero noise to the output confuses the
detection mechanism of (4.5) because vy, (k)= y(k)—-y(k—1) will likely be non-zero
even if y(k) is between the ascending and descending functions. With added noise, the
detection mechanism of y,(k) will be invalid as aimost every output point will be

indicated on one of the two functions.

v(kl
k % n-1 i k
LCEEIN > > h(iu(k—i) W ow) P 20
+T ;
N
n—o
Bl e

Figure 28: Improved ascending/descending function detection
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To improve estimation performance, we modify the ascending/descending function

detection as shown in Figure 28.

yK)>ykk-)+n = ak)=Ldk)=0 = y(k)=f, (x(k)
ly(K) - y(k-D|<n = a(k)=0,d(k)=0 (4.25)
yK)<yk-)-n = ak)=0,d(k)=1 = y(k)=f,(x(k))

Thus 11 setsa*”deadzone’ to mitigate the effects of output noise. We modify (4.6) as.
sign(y(k))- sign(q)T (k)ﬁ—c) a(k) =1 d(k)=0
e(k) = 0 a(k)=0,d(k)=0 (4.26)
sign(y(k))- sign(gz&T (k)h+ C) a(k)=0,d(k) =1
Note that the circuit of Figure 28 is designed to preclude the condition a(k) =1, b(k) =1.

In the above, n givesthe a(k) =1 or d(k) =1 decisions noise immunity.

Simulation testing

To demonstrate the performance of our agorithm, we provide two numerical

simulations. Simulation A estimates a 9™ order FIR filter:

A(2) =0.265+0.556Z * +0.523z % + 0.419z° +0.301z*
+0.205z° +0.1362° +0.088z ' +0.056z ° +0.0352"°

(4.27)
The true and estimated frequency responses are plotted as the dotted and solid lines,
respectively, in Figure 30. Simulation B estimates an 8" order FIR filter:
B(z) = 0.764+0.448z 2 - 0.413z™* - 0.091z° + 0.190z"® (4.28)
The true and estimated frequency responses are plotted as the dotted and solid lines,
respectively, in Figure 31.
The backlash function, plotted in Figure 29, satisfies Assumption 4.1 with X-axis

intersection points +1. Figure 29 was generated by simulation. First a set of 10000
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backlash input/output points [Xx(k), y(k), y,(k)] was collected from Simulation A. Then
the outputs that were not on the ascending or descending function were transfered to the
origin so that the plot area betwwen the two functions was not filled in.

The input u(k) is Gaussian with variance ¢®=2. Uncorrelated Gaussian noise

is added to the output to produce SNR of 10dB, 20dB and 30dB. A genetic algorithm
(GA), similar to that described in Chapter 3 was used to search for the true FIR
coefficients. The number of ‘parents was 64 and the number of iterations was set to 200.
The GA is a zero-order organized search algorithm that solves the following
minimization problem:

. 1Y

h= arg mi nﬁk;e(k)2 (4.29)

Ihl=1

With e(k) defined by (4.25) and (4.26). To show the improvement obtained by these
modified error equations, we set noise threshold n =0 and =20 , where o is the

standard deviation of the input samples.
Note that the GA is not necessarily optimum and has not been proven to converge

in every case. The results presented here are the averages of 4 Monte-Carlo simulations.

The FIR means sgquared coefficient error is defined as MSE = Hﬁ— hH . This demonstrates

the effectiveness of the identification algorithm. However, we should emphasize that the
uniqueness of the estimate h is achieved as sample record size N —» . For finite N, a
slight variation in h may not result in a change in the number of ¢(k) e S or ¢(k)eS,

for k=12,..,N. For these simulations, N is set to 10000, 20000, 40000 and 80000

samples.

www.manaraa.com



93

Backlash Characteristic

Output

Figure 29: Backlash function used in simulations A and B

Simulation A results are shown in Table 10 and Table 11. Table 10 shows the
expected decrease in MSE as N and/or SNR are increased. Also, as the noise threshold is
increased, the M SE decreases by afactor of 2 in most cases. Table 11 illustrates how the
noise interferes with the ascending/descending function decison. With the noise
threshold set to zero, non-zero added output noise causes the two point output difference
in (4.25) to always be non-zero so that the ascending function is indicated for about 50%
of samples and the descending function is chosen for the other 50%. This is clearly

invalid and setting n = 20 dleviates this problem. Note that this setting has not been

shown to be optimum; there may be a different setting that produces even better results.

Figure 30 shows the frequency domain estimation performance for SNR=10, N=10000
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and n =20 . Instead of plotting impulse response estimate h di rectly on top of true

impulse response h, Figure 30 compares the equivalent frequency responses. This
approach better reveals the actua estimation performance because very dight impulse
response inaccuracies can lead to large changes in the zeros of the system function. Parts
of the spectral response that depend on these zeros can be greatly affected. Note that the
horizontal scale of Figure 30 is in radians per sample = 2z f,,/F,, where F, is the
sampling rateand f, istheinput frequency.

While Simulation A estimated a lowpass filter, Simulation B shows an alternate
estimation for a bandstop filter. Results are shown in Table 12, Table 13 and Figure 31.
All the Simulation A comments above apply directly to Simulation B.

Compare Table 1 in Chapter 2 and the results presented here. From Table 13
consider the case where N=80000, SNR = 20dB and noise threshold is 2o . The total
number of ascending and descending function output points are 31498 and the MSE is
0.0177. Compare thiswith Table 1 where N = 35000, SNR = 20dB and resulting MSE =
0.0211. The MSE results are close. Although the input distributions and the linear parts
are different, a reasonable explanation for the similar MSE results is that the quadrant
scheme of Chapter 2 was based on a priori knowledge of a single point on a single
function nonlinearity and the algorithm presented here is based on a priori knowledge of
asingle point on each of the functionsin a bi-functional memory nonlinearity.

This chapter has shown that the FIR linear part of a Wiener system with backlash
can be identified by comparing the output polarity of the unknown system with that of an
adjustable known system. For proof of identifiability, a Gaussian random input is shown

to be sufficient. A detailed discussion of convergenceis offered.
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N Noise SNR = 10dB SNR =20dB SNR =30dB
Threshold | MSE | CPU(min) | MSE CPU(min) | MSE CPU(min)
10000 | 0 0.0620 | 6.2 0.0664 | 8.3 0.0561 | 4.8
20 0.0317 | 4.1 0.0242 | 4.17 0.0245 | 6.06
20000 | O 0.0393 | 14.4 0.0312 | 16.2 0.0364 |94
20 0.0191 | 7.9 0.0202 | 8.00 0.0177 | 11.80
40000 | O 0.0425 | 27.6 0.0332 | 254 0.0316 | 18.8
20 0.0190 | 15.9 0.0140 | 16.2 0.0133 | 22.32
80000 | 0 0.0339 | 59.7 0.0288 |41.3 0.0211 |41.9
20 0.0163 | 35.6 0.0148 | 47.8 0.0134 | 61.13
Table 10: Simulation A, FIR backlash identification performance
N Noise SNR = 10dB SNR =20dB SNR =30dB
Threshold | Asc Des Asc Des Asc Des
10000 | O 4990 5010 4973 5027 5007 4993
20 1028 1011 1275 1284 1577 1581
20000 | O 10039 9961 10003 9997 9959 10041
20 2011 2024 2550 2565 3222 3202
40000 | O 20016 19984 20057 19943 20022 19978
20 3970 4014 5069 5146 6367 6364
80000 | O 40011 39989 39976 40024 39994 40006
20 8158 8172 10263 10242 12805 12691

Respaose Megnitude (dB)

-10
-15
-20
-25
-30
-35

-40
o}

Table 11: Simulation A backlash ascending/descending statistics

Blacklash FIR ID: Avg MSE=0.0190923, N=20000, SNR=10 dB

FIR Est

Figure 30:

NF---

Frequency (mod pi)

Simulation A, FIR backlash frequency response matching
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N Noise SNR = 10dB SNR =20dB SNR =30dB
Threshold | MSE | CPU(min) | MSE CPU(min) | MSE CPU(min)
10000 | O 0.0633 | 5.1 0.0616 | 6.2 0.0635 | 4.9
20 0.0320 | 4.3 0.0304 |45 0.0267 | 4.7
20000 | O 0.0527 | 9.6 0.0491 | 14.8 0.0547 | 9.6
20 0.0351 | 8.3 0.0250 |86 0.0223 | 8.8
40000 | O 0.0495 | 25.6 0.0497 | 32.6 0.0496 | 18.8
20 0.0338 | 16.8 0.0194 | 175 0.0212 | 179
80000 | O 0.0491 | 56.4 0.0498 | 51.3 0.0451 | 43.0
20 0.0235| 37.4 0.0177 | 39.3 0.0185 | 46.7

Table 12: Simulation B, FIR backlash identification performance

N Noise SNR =10dB SNR=20dB SNR=30dB
Threshold | Asc Des Asc Des Asc Des
10000 | O 4967 5033 4997 5003 4986 5014
20 1595 1583 1968 1981 2214 2227
20000 (O 10021 9979 9962 10038 10002 9998
20 3157 3168 3947 3966 4416 4423
40000 | O 19993 20007 19999 20001 20059 19941
20 6302 6302 7893 7945 8982 8928
80000 |0 39972 40028 39956 40044 39953 40047
20 12736 12726 15737 15761 17794 17828

Table 13: Simulation B backlash ascending/descending statistics

Blacklash FIR ID: Avg MSE=0.0350912, N=20000, SNR=10 dB

FIR Est
= O N S AN P e EIR True

-io+r---------4----------r_ - - - - --r--—-—— o4 I

|
I
I
I
|
I
1
| | | |
I I I I
I I I I
l l l l
I I I I
A5F--——————— A ____ o ___\- L A ____
| | "
I I |
| | |
I I I
I I I
I I I

-20

| |
| |
| |
| |
| |
Il I Il I I
(o} 0.5 1 1.5 2 2.5 3
Frequency (mod pi)

Figure 31: Simulation B, FIR backlash frequency response matching
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CHAPTER S
CONCLUSION

This thesis has shown that, given certain very minimal a priori information on the
nonlinearity, both the FIR and IIR linear parts of a Wiener system are identifiable without
a Gaussian distributed input in all cases except the memory nonlineaerity. The unknown
nonlinearity is not necessarily invertible and need not be parameterized in any way.

The focus has been on the study of the least amount of a priori information
needed on the nonlinearity to identify the linear system. As shown, very little
information is actually needed athough intuition suggests that the algorithms will
converge more quickly if more information is available. The following algorithms were
developed and tested:

1. Quadrant apriori information

2. Single point a priori information

3. Localy monotonic apriori information

For each algorithm, identifiability and in some cases convergence proofs were
provided for various combinations of Wiener system FIR and IIR linear blcoks and
memory and non-memory nonlinear blocks. The effect of threshold settings on noise
performance was discussed and tested at length.

Hopefully, this work will benefit future practitioners of this important field of

nonlinear system identification.
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APPENDIX

This appendix provides the proof that, for an N sample experiment:

N . 2

E{%Z(sign(qﬁ(kf h) —sign(¢(k)" h))2 —4F (0)} 50 as Now
k=1

Note that the law of large numbers invoked above requires the random samples of

the squared error to bei.d.d. Because of the overlap in the FIR shift register for changes

in k less than n, the squared error samples are not necessarily i.d.d.
For |k—j|=n, ¢(k)and ¢(j) areindependent and we have : F(0) =|im(%j,
N —>o

here w is the sign difference count in the set of N samples.

‘E((s‘gn(qﬁ(kf - signe() ) -4 )|

= |E(2- 28 9n(p (<" sign(¢ (k)" ) — 4F (6) ) E (2~ 2sign(4 ()" h)sign(¢(J)" F) ~4F (6)
{2252 iz 5o

We find that for k=j:

‘E((signw(kf - signe() ) -4F0) |

- |E([2-25n(@ (k)" Wsign(e(k)” A)~4F (6) || 2-28ign( ()" Wsign(4 ()" ) —4F (6) ]|

4-4sign(¢(J)" Wsign(¢(j)" h) ~8F (0) - 4sign(¢ (k)" h)sign(¢(k)" h)
+asign(¢(K)" Wsign(g (k)" h)sign(¢(J)" Msign(#()" h)

+8F (0)sign(¢# (k)" h)sign(¢(K)" h) ~8F (6)

+8F (0)sign(#()" )sign(¢(j)" h) +16F (6)°
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=4—4+8F(0)—8F () —4+8F (0) + 4+8F (8) —16F (6)*
—8F (0) +8F () —16F (0)* +16F (0)* =16F (8) —16F (8)*

Finaly, for [k—j|<n, weclaim that:

‘E{(sign(qs(kf ) - Sgn(@(" ) —4F(9)}2 ~c(k, )

For some constant c where 0<c(k, j) <c<oo. The proof proceeds as follows:

k=1

e {3 (s -sgn(otoy ) -4F “”j}z

1 E((sign(g" () —sign(g" (K)h))” - 4F (0)])°
N kZ:;‘ N

L E(sign(¢’ (kK)h) —sign(g" (k) h) - 4F (9))
N

x> ((Sgn(g" (j)h) —sign(@" (j)h))* —4F (6))

0<k—jl<n-1

] N N
(A6F (0)(1-F(0)) + 2(n—-1)c)
N

ii (A6F (0)(1-F(0)) + 2(n—-1)c) _ (A6F (0)1-F(8))+2(n-1)c)
N i

—0asN > w

Therefore:

Iim{E{%Z(s‘gn(qs(k)T )~ sign(g(" ﬁ))2—4F(0)} }:o

N—0 k=1

Thisimplies, in probability:

N k=1

Im{ > (sin(6(" )~ Sgn(g(i” h))} 4F(6)
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