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ABSTRACT

The ability to construct accurate mathematical models of real systems is an

important part of control systems design. A block oriented systems identification

approach models the unknown system as interconnected linear and nonlinear blocks. The

subject of this thesis is a particular configuration of these blocks referred to as a Wiener

model. The Wiener model studied here is a cascade of an input linear block followed by

a nonlinear block which then provides one output. We assume that the intermediate

signal between the linear and nonlinear block is unknown, only the Wiener model input

and output can be sampled.

The difficulty of Wiener model identification is the interaction of the linear and

nonlinear blocks. If one of the blocks is known then the intermediate signal can be

produced and identification becomes much easier. Thus this thesis focuses on

identification of the linear transfer function in a Wiener model. The question examined

throughout the thesis is: given some “small” amount of a priori information on the

nonlinear part, what can we determine about the linear part? Examples of minimal a

priori information are knowledge of only one point on the nonlinear characteristic, or the

sign of the output or simply that the transfer characteristic is monotonic over a certain

range. Nonlinear blocks with and without memory are discussed.

The contributions of this thesis are several algorithms for identifying the linear

transfer function of a block oriented Wiener system. These are presented and analyzed in

detail. These methods can be applied to either finite or infinite impulse response (i.e. FIR

or IIR) linear blocks. Each algorithm has a carefully defined set of a priori information

on the nonlinearity. Also, each approach has a set of assumptions on the input excitation.
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ABSTRACT

The ability to construct accurate mathematical models of real systems is an

important part of control systems design. A block oriented systems identification

approach models the unknown system as interconnected linear and nonlinear blocks. The

subject of this thesis is a particular configuration of these blocks referred to as a Wiener

model. The Wiener model studied here is a cascade of an input linear block followed by

a nonlinear block which then provides one output. We assume that the intermediate

signal between the linear and nonlinear block is unknown, only the Wiener model input

and output can be sampled.

The difficulty of Wiener model identification is the interaction of the linear and

nonlinear blocks. If one of the blocks is known then the intermediate signal can be

produced and identification becomes much easier. Thus this thesis focuses on

identification of the linear transfer function in a Wiener model. The question examined

throughout the thesis is: given some “small” amount of a priori information on the

nonlinear part, what can we determine about the linear part? Examples of minimal a

priori information are knowledge of only one point on the nonlinear characteristic, or the

sign of the output or simply that the transfer characteristic is monotonic over a certain

range. Nonlinear blocks with and without memory are discussed.

The contributions of this thesis are several algorithms for identifying the linear

transfer function of a block oriented Wiener system. These are presented and analyzed in

detail. These methods can be applied to either finite or infinite impulse response (i.e. FIR

or IIR) linear blocks. Each algorithm has a carefully defined set of a priori information

on the nonlinearity. Also, each approach has a set of assumptions on the input excitation.
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CHAPTER 1
INTRODUCTION

This thesis studies the construction of mathematical models that predict the output

of real systems. Input and output samples from a real system are collected and then used

to infer a mathematical model. The mathematical model can then be used to predict the

response of the real system to other inputs. To illustrate the many benefits obtainable

from this approach, consider model predictive control of the pH of a chemical mixing

process [18]. In real time, a mathematical model accepts flow rate measurements of

various chemicals entering a large unwieldily mixing system. The control algorithm

predicts and applies changes to the various flow rates to regulate the effluent pH to a

desired setpoint. Errors between actual and desired pH can be averaged over time and

used to adjust the model. The model that the control engineers started with probably

came from a system identification procedure.

For a given real world process, there are many different models that could be

applied. A block oriented model consists of a number of interconnected blocks each

having a carefully defined system function and various numbers of inputs and outputs.

These blocks are sometimes refered to as “black-boxes”. As described in [32], the

system function of a black-box is very flexible and has been proven useful for describing

many natural phenomena. Each block is classified as linear or nonlinear. The dynamics

of linear blocks are usually characterized by a set of transfer function parameters. The

nonlinear blocks are usually characterized by a nonparametric set of input output points,

although other representations are possible, for example piecewise linear described by

only a few parameters [3]. In this thesis the focus is on a particular block oriented
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technique called Wiener system modeling.

A Wiener system consists of a linear dynamic system followed by a static

nonlinearity, see Figure 1. The input ( )u k is filtered by linear system ( )G z . The output

( )x k then goes to static nonlinearity ( ( ))f x k . Note that all these signals are represented

by discrete time indexed samples. Finally, the output of ( ( ))f x k is disturbed by noise

( )v k to produce final output ( )y k . Throughout this thesis output noise ( )v k is

uncorrelated with ( )y k .

Linear system ( )G z and nonlinearity ( ( ))f x k can take many forms. For

example ( )G z can have a finite or infinite impulse response (FIR or IIR). Also ( ( ))f x k

can be a simple memory-less input to output mapping or a more complicated memory

based system where the output depends on previous inputs. These blocks can have one

input and one output (SISO) or multiple inputs and outputs (MIMO). In this thesis we

study only SISO linear systems with either FIR or IIR system functions. We consider

nonlinearities with and without memory.

Wiener system structure

The Wiener nonlinear system is named after Norbert Wiener and was probably

first described in [38]. The block diagram of the discrete time Wiener model considered

throughout this proposal is shown in Figure 1. The system identification task is

challenging because usually the intermediate signal, ( )x k , is not available. Thus

identification has to rely only on observations of input ( )u k and output ( )y k .

There are a wide range of applications of block oriented Wiener models. They

have been applied to both natural phenomena, such as the pH control process described
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above [18], and man made devices, such as valves [31] and power amplifiers [6, 25].

The Wiener model blocks are assigned to model the behavior of specific parts of the real

world system. For example, in the pH control system discusses above the Wiener model

linear subsystem represents the mixing dynamics of the input reagent streams and the

nonlinear subsystem represents the nonlinear titration curve (pH as a function of the

chemical components).

( )G z ))(( kxf

Figure 1: Wiener system block diagram

Identification of Wiener systems has been an active research area for many years

and there exist several identification algorithms in the literature. Most of these

algorithms rely on the following assumptions about the input and/or output and/or system

structure:

1. Gaussian random input, see [7, 19 or 22]

2. The unknown nonlinearity is invertible and/or monotonic, and represented by

some known basis functions, see [2, 19 or 41]

3. The unknown nonlinearity is a piecewise linear function, see [36]

In the first case, identification of the linear system is possible without knowing additional

facts about the nonlinearity. This is due to the Bussgang theorem ([12], Theorem 1)

which says that for a Gaussian distributed input signal the cross correlation between input

and output of a nonlinearity is a scaled version of the input auto correlation, independent
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of nonlinear distortion. The second and third cases use some a priori information about

the Wiener model to allow identification without a Gaussian distributed input.

In this thesis we ask the following question about Wiener models: what is the

least amount of a priori information on the unknown system so that identification of the

linear block is possible with a non-Gaussian input? In Chapters 2 and 3, a starting point

to answering this question is to consider what constitutes the least amount of a priori

information on the nonlinearity so that the linear part can be identified without the

Gaussian assumption on the input. In Chapter 4, we identify a linear block that is

followed by a memory nonlinearity. A minimal a prori information set is defined for this

more complicated nonlinearity.

Clearly, if the linear part can be reliably identified and the internal signal x(k)

recovered then identification of the nonlinearity is relatively easy. However, quantifying

what exactly is meant by “The least amount of a priori information on the nonlinearity” is

very difficult.

Some efforts have been made to answer this question in an indirect way, i.e. to

develop identification algorithms using as little a priori information as possible. To this

end, some work has been reported in the literature [41] that a monotonicty assumption on

the unknown nonlinearity ensures a (not necessarily unique) solution for an FIR linear

system. This was the first time an identification algorithm was developed in a non-

Gaussian case by only assuming monotonicity of an unknown, possibly non-parametric,

nonlinearity. Part of the research presented here extends and enhances the work of [41]

in several directions.

The purpose of this research is to develop identifiability proofs and associated
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algorithms that approach the minimal amount of a priori information needed on the

Wiener system nonlinearity to allow linear system identification. To be specific, this

research is concerned with parametric identification of the first block in Figure 1, the

linear system, under one of the following sets of a priori information on the second block,

the nonlinearity:

1. Only the nonlinearity output sign is known, i.e. one bit quantization.

2. Only a single point on the memoryless nonlinear characteristic is known.

3. The nonlinearity is known to be monotonic over an output range.

4. The X-axis intersection points of a memory nonlinearity are known.

In the following chapters, the above conditions are used to develop identifiability proofs

and algorithms for both FIR and IIR linear systems.

System identification procedure summary

The following steps are common to all the block oriented nonlinear system

identification algorithms developed in this thesis.

Input stimulus choice

For the purpose of this thesis, we will have to assume that all input identification

signals are independent and identically distributed (i.i.d.). The requirements on the

probability density of each sample are very minimal.

Data collection

The next step is to collect input and output data records, ( )u k and ( )y k for

1, 2, ,k N  from the system to be identified. As will be discussed, N should be as

large as possible for better estimation performance.
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Model selection

Past experience with the real system to be identified, or some other insight, may

lead to the conclusion that a Wiener model is a good starting point. If so, decide what

prior information can be assumed. Examples are, what is the maximum order of the

linear block or can we assume that the nonlinearity goes through the origin and is

monotonic. See [26, 32] for an indepth discussion of this step.

Model estimation

The Wiener system linear and nonlinear blocks must be parameterized to fit the

real data collected in the second step. The linear system is assumed of be of known

order. The nonlinear subsystem could have a structure that can be described by a small

set of parameters. Sometimes this is not possible and the nonlinearity has a

nonparametric characterization. In this case the nonlinear function is represented by a set

of estimated input/output points.

For the linear part, the estimation procedure adjusts the linear parameters to

minimize the error between the output of the unknown system and the estimated system.

More precisely, we minimize a cost function such as  2

1

1
( )

N

N
k

J e k
N 

  where

  ˆ( ) ( ) ( ) ( )e k y k v k y k   and ( )y k is the true system output, ˆ( )y k is the estimated

system output that we can control and ( )v k models the noise. There are various gradient

based search techniques to minimize NJ . There is also a set of highly organized iterative

seach techniques called Genetic Algorithms [16].
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Model validation

This is the final test to determine if the model produced by the above steps is

useful. A fresh set of input and output data records, ( )u k and ( )y k for 1, 2, ,k N  is

collected from the system to be identified. The new input samples are processed through

the estimated model. The model output is compared with the new output samples and the

mean squared error cost function is evaluated to determine if a good fit has been

achieved.

Thesis outline

Throughout the thesis, discussion centers on the following three sets of Wiener

system a priori information on the nonlinear block:

1. Quadrant a priori information

2. Single point a priori information

3. Locally monotonic a priori information

Chapter 2 defines these in detail and then goes on to discuss indentification of an FIR

linear block given each one of the above a priori information. Chapter 3 is an extension

of the proofs and analysis of Chapter 2 to an IIR linear block. Chapter 4 goes further and

applies these techniques to a nonlinear block with memory. Finally, Chapter 5 presents

overall conclusions.
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CHAPTER 2
FIR LINEAR PART IDENTIFICATION

Equation Chapter 2 Section 1

This chapter shows how the impulse response of the FIR linear part of a Wiener

system may be identified using a carefully defined set of minimal a-priori information on

the nonlinear part.

Problem statement

The Wiener system of Figure 1 is described by

 ( ) ( ), ( 1), , ( 1) ( )

( ) ( ( )), 1, 2, ,

Tx k u k u k u k n h k h

y k f x k k N

    

 




(2.1)

where ( )u k , ( )x k and ( )y k are the input, the internal and the output signals,

respectively. Parameter vector nh is to be identified. The first non-zero element of h

is positive and 1h  (note that throughout this thesis we define 2

1

n

i
i

x x


  ).

This condition is necessary and standard in Wiener system identification because the

scaling of the linear and nonlinear subsystems cannot be separately identified. The

internal variable ( )x k is assumed unknown. Both ( )x k and ( )y k are assumed bounded

for all k. As stated, not much information is known about nonlinearity ( ( ))f x k . Input

( )u k is i.i.d. but not necessarily Gaussian. Finally, it is assumed that an upper bound, n,

on the impulse response of the FIR linear part is known.

We say that the parameter vector h is identifiable from the input-output data set

 
1

( ), ( )
N

k
k y k


if h can be uniquely identified from the Wiener system model and the data

set, independent of the unknown nonlinearity ( ( ))f x k . Equivalently, there does not exist
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a different pair  ,h f that would produce an identical input-output data set

 
1

( ), ( )
N

k
k y k


As previously stated, the pertinent question is: what minimal a priori

information on the unknown ( ( ))f x k allows identification of h?

Quadrant a priori information

This section considers a case where only quadrant information about the nonlinear

subsystem is known a priori. The nonlinearity is strictly in the first and third quadrants

so that:      =sign x k sign y k for   1, , .k N  This choice of first and third

quadrants is for simplicity only. The results can be extended to other quadrant a priori

information cases. The nonlinearity is not assumed to be continuous, monotonic or

invertible except with regard to quadrants. For example, the nonlinearity can be

discontinuous at the origin. Now we can observe the sign of ( )x k by processing the

output of the system to be identified, ( )y k , through the following:

 
1 ( ) 0

( ) 0 ( ) 0

1 ( ) 0

y k

sign y k y k

y k

 


 
 

(2.2)

Sometimes this is written as sgn( ( ))x k . Also, some references (for example

mathematical authority [42]) define this function with 1 outputs only. For this thesis,

we must have the definition above.

There is only sparse information in the published literature about system

identification using polarity sensing. In the case that the nonlinearity is known, although

not necessarily invertible, convergence results were obtained in [39] with a quantized

output signal provided that there is signal energy around the switch points. In particular,
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global convergence was achieved in [39] for a FIR system with an arbitrary and known

output quantizer.

))(( kxf

))(ˆ(ˆ kxf
)(ˆ ky)(ˆ kx

1 2 1
1 2

n
nh z h z h z     

1 2 1
1 2
ˆ ˆ ˆ n

nh z h z h z     

( )x k( )u k

( )v k

( )e k

( )y k

Figure 2: Wiener FIR system identification, quadrant only a priori knowledge

Figure 2 shows the system identification setup, ( )v k is arbitrarily distributed

noise, uncorrelated with input u(k). The system identification algorithm adjusts

coefficient estimate ĥ to match unknown coefficients h. The square boxes on the right

side implement sign function (2.2). A cost function based on the sign error output,

   ˆ( ) ( ) ( ) ( )e k sign y k v k sign y k   , isused to direct the adjustments of ĥ . Although

 ˆ ˆ( )f x k is shown, it is not necessary for linear part identification. If included, it must

conform to Assumption 2.1, below.

There is an obvious practical advantage to only needing to observe the sign of

( )y k . The output sensing circuit can be as simple as a zero crossing detector. In

addition, the detected polarity can be transferred as just one bit with high noise immunity.

The following assumption defines a priori quadrant information.

Assumption 2.1:

The unknown nonlinearity is strictly in the first and third quadrants. In other

words, ( ( )) ( ( ))sign x k sign y k for 1,...,k N Alternatively, the unknown
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nonlinearity can be in the second and fourth quadrants, where

( ( )) ( ( ))sign x k sign y k  for 1,...,k N .

The following assumption defines the allowable inputs for this chapter’s analysis.

Assumption 2.2:

Input u(k) is i.i.d. and the input probability density function is positive and

continuous in an interval  ,a a for some 0a  .

To establish identifiability, we propose the following:

Theorem 2.1:

For any unit vector h h , with probability one as N  , there exists some

( )k , 1 k N  so that ( ( ))sign y k = ( ( ))sign x k = ( ( ) )Tsign k h ( ( ) )Tsign k h

Proof:

The proof has two parts:

1. For any input data vector ( ), 1k k N   and unit vectors h and h ,

represented in rectangular coordinate space n , there are regions (called sign

difference regions) in n such that ( ( ) ) ( ( ) )T Tsign k h sign k h  .

2. Because the positive distribution over interval  ,a a , with probability one

some ( )k will be in the sign difference regions as N  .

In the first part, we show that for any unit vector h h , there exists some  so

that ( ) ( )T Tsign h sign h  . For any unit vector h h , there are two cases:

0( , ) 90h h  and 0( , ) 90h h  . For the first case, let  be any non-zero vector such

that:

0 0 090 ( , ) 180 ,  0 ( , ) 90h h       (2.3)
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This leads to:

 

 
cos ( , ) 0

cos ( , ) 0

T

T

h h h

h h h

  

  

  

  
(2.4)

and this in turn implies:

( ) ( )T Tsign h sign h  (2.5)

For the second case, denote 00 ( , ) 90h h    . Let  be a non-zero vector that lies in

the plane spanned by h and h such that:

0 0 0 01 2
( , ) 90 90 ,  ( , ) 90 90

3 3
h h           (2.6)

This implies

 

 
cos ( , ) 0

cos ( , ) 0

T

T

h h h

h h h

  

  

  

  
(2.7)

and thus

( ) ( )T Tsign h sign h  (2.8)

From the above discussion, for any unit vector h h , there exists some non-zero vector

 , independent of the magnitude, and ( ) ( )T Tsign h sign h  .

For the second part of the proof, we construct a cone with a small volume around

 . As long as the volume is small enough, by the continuity argument,

( ) ( )T Tsign h sign h  for all  in the cone. Now, by the input probability distribution

continuity of Assumption 2.2, with probability one as N  , some ( )k will be in the

cone. This completes the proof.

For an algorithm based on the above theorem, the quadratic cost function based
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on the error    ˆ( ) ( ) ( ) ( )e k sign y k v k sign x k   in Figure 2 will be used:

2 2

1 1

1 1ˆ ˆ( ) ( ) [ ( ( ) ( )) ( ( ))]
N N

k k

J h e k sign y k v k sign y k
N N 

     (2.9)

The following minimization problem is solved to find the estimate ĥ :

2

ˆ 1 1

1ˆ ( )arg min
N

h k

h e k
N 

  (2.10)

The theorem only establishes that there is a unique global minimum at ĥ h such

that if ĥ h then the cost function will be greater than zero for large enough N.

However, it is not clear if there are one or more local minimums that would interfere with

a numerical simulation.

To function reliably, the cost function should have no local minimums and be

nonzero whenever ĥ h . To this end, consider the two dimensional case illustrated in

Figure 3. First, suppose the input ( )u k is distributed such that the probability density of

( )k is positive for any direction. Next, consider that the space 2 can be divided into

the four sectors shown in Figure 3. Clearly, cosT h h   implies:

ˆ( ) ector 1 ( ( ) ) ( ( ) ) ( ) 0

ˆ( ) ector 2 ( ( ) ) ( ( ) ) ( ) 2

ˆ( ) ector 3 ( ( ) ) ( ( ) ) ( ) 0

ˆ( ) ector 4 ( ( ) ) ( ( ) ) ( ) 2

T T

T T

T T

T T

k S sign k h sign k h e k

k S sign k h sign k h e k

k S sign k h sign k h e k

k S sign k h sign k h e k

  

  

  

  

    

    

    

    

(2.11)

Let ( ) 0F   be the probability that ( )k lies in sectors 2 or 4. A reasonable observation

from Figure 3 is that, given assumptions on the input ( )u k , a larger  results in larger

sign difference regions which result in a larger cost function in (2.9). To help quantify
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this, consider the sum of a series of N squared sign errors:

 
2

1

1 4ˆ( ( ) ) ( ( ) )
N

T T

k

w
sign k h sign k h

N N
 



  (2.12)

Here, w is the number of samples of ( )y k in the series that have different signs. Thus

4w

N
is the relative frequency probability of landing in sectors 2 or 4.

ĥ

h

)(ku

)1( ku



Figure 3: Sign difference regions

We would like the average of the relative frequency probability over N samples to be a

direct function of  :

 
2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( )
N

T T

N k

sign k h sign k h F
Nlim   

 

  (2.13)
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Properties of ( )F  are described in more detail below. To show this correspondence we

prove the following mean square convergence:

 
2

2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( ) 0 as
N

T T

k

E sign k h sign k h F N
N

  


 
    

 
 (2.14)

See the Appendix for details of the proof. This implies that, in probability:

 
2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( )
N

T T

N k

sign k h sign k h F
Nlim   

 

  (2.15)

Figure 4: Four sign difference regions in three dimensions

The idea can be easily extended to a higher dimensional case. Let h and ĥ be unit

vectors in n . Consider that h and ĥ span a plane,  ˆ ˆ( , ) , ,S h h h h R      , in a

two dimensional subspace of n . Let ( ),r       denote the unit circle on the
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plane. Further, let ˆ(0) and ( )r h r h  . Without loss of generality, rotate the coordinate

reference to line up ˆ( , )S h h and ( )r  with the first two axes:

 

 

 

( ) cos( ) sin( ) 0 0 0

ˆ( ) cos( ) sin( ) 0 0 0

(0) 1 0 0 0 0

T

T

T

r

r h

r h

  

  



 

 







(2.16)

A vector tangent to ( )r  :  
( )

sin( ) cos( ) 0 0 0
Tdr

d


 


   is also a normal

vector for plane ( )Q  . ( )Q  and ˆ( , )S h h are perpendicular and both contain the origin.

Their line of intersection is thus collinear with a radius of ( )r  at angle  . For example,

Q(0) lines up with h and ˆ( ) lines up withQ h . Two planes, and
2 2

Q Q
 


   

   
   

,

divide up n into the same four sectors seen in the two dimensional case. A three

dimensional example is shown in Figure 4.

The following additional theorem helps establish cost function monotonicity:

Theorem 2.2:

For any unit vector ĥ with ˆ( , ) for -h h       :

 
2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( )
N

T T

N k

sign k h sign k h F
Nlim   

 

  in probability. ( ) 0F   is

the probability that ( )k lies in sectors 2 or 4, further: Thus ( )F  is strictly

decreasing for - 0   and strictly increasing for 0    and

( ) 0 0F    

Proof:

The proof of the above theorem is a direct consequence of the observations.
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Consider Assumption 2.2. The continuity on the distribution of input ( )u k guarantees

that ( )k assumes any direction in n with a positive probability. Hence, the

probability ( )F  that ( )k lies in sectors 2 or 4 is monotonic as a function of the

(probabilistic) volume of sectors 2 and 4. This leads to the statement that ( )F  is strictly

decreasing for - 0   and strictly increasing for 0    . This completes the

proof.

The existence of one and only one global minimum is based on infinite N. For

finite N, it may be possible that although ĥ h , no ( )k happen to inhabit either sector 2

or 4 and the cost function will be zero. This would not happen with infinite N. As the

next section will demonstrate, a large N can be chosen to achieve reliable convergence.

Simulation testing

A system identification experiment was set up using the circuit of Figure 2

combined with the cost function of (2.9). The input ( )u k for 1,2, ,k N  is i.i.d.

uniformly in  1,1 and noise ( )v k is Gaussian. For adjusting the estimate ĥ , based on

the cost function, the recently developed Genetic Algorithm (GA) was chosen as the best

performer. The GA used here was adapted from [1]. For this simulation, the number of

total GA parents is 32. Note that the GA is a zero order carefully organized heuristic

search algorithm that could be suboptimal. More GA details are provided in Chapter 3,

for example see Figure 22. Also see reference [16].

The unknown FIR transfer function to be identified is:

1 2 3 4

5 6 7 8 9

0.5795 0.4745 z 0.3885 z 0.318 z 0.2604 z

0.2132 z 0.1746 z 0.1429 z 0.117 z 0.09579z
h

   

    

    
        

(2.17)
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This linear system was followed by the following discontinuous nonlinearity:

0.8 ( ), ( ) 0

( ) 1.4 ( ), 0 ( ) 0.5

2 ( ), ( ) 0.5

x k x k

y k x k x k

x k x k




  
 

(2.18)

Figure 5 and Figure 6 are plots of the FIR frequency response and the nonlinear transfer

function, respectively. The error minimized by the GA is defined as ˆMSE h h  .

Each point in Table 1 is the result of 500 GA iterations; total GA run time for each point

was about 15 minutes. Because the GA can potentially take hours to search a high

dimensional space, a reasonable run time is important when considering practicality.

SNR (dB) 5 10 20 40
MSE 0.0529 0.0394 0.0211 0.0044

Table 1: Quadrant information estimation error vs. noise level, N=35000

N 5000 15000 25000 35000 50000
MSE 0.0422 0.0358 0.0359 0.0211 0.0175

Table 2: Estimation error vs. N, for SNR = 20dB

It should be emphasized that the uniqueness of the unknown parameter vector h is

achieved as the number of data points N  . For finite N, the cost function behaves as

a step function and a slight variation in the estimate may not give any change. The use of

the sign function in the identification algorithm is dictated by the available information,

i.e. Assumptiom 2.1.

Table 2 shows the simulation results for SNR = 20dB and various values of N.

Recall that the convergence results are derived under the assumption that N  . A

large N should lead to a small estimation error as supported by the results of Table 2.
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Figure 5: Simulation example, FIR lowpass response

Figure 6: Simulation example, nonlinear block
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Single point a priori information

Consider identification of the FIR linear part assuming we know one point on the

static nonlinear transfer function such that 0 0( )f x y . Take the point to be at the origin

for simplicity. Unlike the a priori quadrant information described above, for

identification under single point a priori information we assume continuity on  ( )f x k

in the neighborhood of the origin. For example, the preload nonlinearity of Figure 7 is

acceptable for a priori quadrant information but will not work for single point a priori

information.

x(k)

y(k)

Figure 7: Unacceptable nonlinearity for single point identification

Assumption 2.3:

It is assumed that (0) 0f  . Further, ( ) 0 0f x x   and (·)f is continuous

in the neighborhood of the origin.

Notice that Assumptions 2.1 and 2.3 are not equivalent. In particular, Assumption

2.1 does not necessarily imply Assumption 2.3 because no continuity on (·)f was

assumed in 2.1. As mentioned, the pre-load nonlinearity satisfies Assumption 2.1
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because all input/output points are in the first and third quadrant but does not satisfy

Assumption 2.3 because (0) 0f  .

Intermediate signal ( )x k is unknown. From Assumption 2.3, only ( ) 0x k  is

known if ( ) 0y k  . Hence, non-zero ( )y k does not reveal any information on the

unknown ( )x k and is not very useful in terms of identification. Identification has to rely

on ( ) 0y k  or ( )y k that is close to zero.

The following lemma is fundamental to understanding single point system

identification:

Lemma 2.1:

Assume that the PDF of ( )u k has a positive support containing a non-empty

interval  ,a a for some 0 1a  . Then h is identifiable for a given input-output

data set  
1

( ), ( )
N

i
i y i


if and only if there exists some 1 21 kp p p N    

where the output  ky p is zero valued (and thus  kx p is also zero valued) and

the corresponding matrix 1 2( )kp p p  satisfies:

1

2
1 2

( )

( )
( ) ( 1)

( )

T

T

k

T
k

p

p
rank p p p rank n

p







 
 
    
 
  
 




(2.19)

Proof:

First we prove sufficiency. That is, the existence of 1 21 kp p p N    

where  kx p and output  ky p are zero valued and rank 1 2( ) ( 1)kp p p n  

implies unique identifiability. If rank 1 2( ) ( 1)kp p p n   then any non-zero
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solution h of:

1 11

2 22

( ) ( ) 0( )

( ) ( ) 0( )

( ) ( ) 0( )

T

T

T
k kk

x p y pp

x p y pp
h

x p y pp







       
       
         
       
        

     

  
(2.20)

lies in the one dimensional null subspace of 1 2( )kp p p  . Each solution has the

form h . So the solution is unique by normalization. End of sufficiency proof.

Second, we prove necessity. That is, unique identifiability implies the existence

of 1 21 kp p p N     where  kx p and output  ky p are zero valued and rank

1 2( ) ( 1)kp p p n   . This proof makes use of logically equivalent

contrapositives. That is, instead of proving from Lemma 2.1 that h is identifiable if and

only if there exists some 1 21 kp p p N     where the output  ky p is zero

valued and the corresponding matrix rank 1 2( ) ( 1)kp p p n   , we prove:

1. If rank 1 2( ) ( 1)kp p p n   then h is not identifiable.

2. If rank 1 2( ) ( 1)kp p p n   and ( ) 0iy p  for 1, ,i k  then h is

not identifiable.

We start by proving that identifiability implies rank 1 2( ) ( 1)kp p p n  

for some 1 21 kp p p N     (item 1 above). First, we look at identifiability when

rank (1,..., ) ( 1)N n   . Let h be a vector, independent of h, in the null space of

(1,..., )N . It follows that:
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(1)

(2)
(1,..., )( ) (1,..., )

( )

x

x
N h h N h

x N

 
 
     
 
 
 


(2.21)

This contradicts the uniqueness of h. Therefore if the null space has dimension two or

higher then h cannot be uniquely identifiable. Second, we look at identifiability when

rank (1,..., )N n  . Since 0h  , we have:

0(1)

0( )

( 1)( 1)

( )( )

T

T

T

T

k
h

x kk

x NN









   
   
   
   

   
   

   
     

  





(2.22)

for some k so that ( 1) 0,..., ( ) 0x k x N   up to a row permutation. Here k N can

have any value as long as the linear system output is zero for the first k rows. The entire

matrix has null space dimension zero. Although the rank of ( 1,..., )k N n   , consider

a sub-matrix made up of only the first k rows:

(1) 0

( ) 0

T

T

h

k





   
   

   
  
  

  (2.23)

The given hypothesis is that rank 1 2( ) ( 1)kp p p n   . On the other hand,

0h  implies that rank (1,..., )k n  . The only other possibility is that rank

(1,..., ) ( 2)k n   . Thus there exists a non-zero h , independent of h, in the null space

of (1,..., )k and a small  so that:
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0(1)

0( )
( )

( 1)( 1)

( )( )

( 1) 0,..., ( ) 0

T

T

T

T

k
h h

x kk

x NN

x k x N










   
   
   
   

    
   

   
     

  

  





(2.24)

Thus h is not identifiable using the first k rows. Remove these and we have:

( 1) ( 1)

( )

( ) ( )

( 1) 0,..., ( ) 0

T

T

k x k

h h

N x N

x k x N







   
   

    
  
  

  

 
(2.25)

Note that rank ( 1,..., )k N n   . Recall the nonlinear transfer function one point a

priori knowledge is limited to (0) 0f  .

Since any function can have the same output value for two different input values,

and because we have no knowledge of the nonlinear function except at the origin, we can

not identify h on the basis of non-zero (.)x and (.)x . For example, let (.)f be an

arbitrarily defined nonlinearity except at:

(0) 0

( ( 1)) ( ( 1)) ( 1)

...

( ( )) ( ( )) ( )

f

f x k f x k y k

f x N f x N y N



    

 

(2.26)

This implies that the pairs ( , )h f and ( , )h h f produce identical input-output data sets

and h is not identifiable. Thus we have shown that (2.22) cannot be used to identify h.

We conclude that 1 2( ) ( 1)kp p p n   for some 1 21 kp p p N     is a

necessary condition.
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For necessity we must prove that identifiability implies both rank

1 2( ) ( 1)kp p p n   for some 1 21 kp p p N     and ( )kx p is zero

valued. So far we have proven that identifiability implies rank

1 2( ) ( 1)kp p p n   for some 1 21 kp p p N     . To prove that given

rank 1 2( ) ( 1)kp p p n   for some 1 21 kp p p N     identifiability also

implies ( )kx p is zero valued, we use the contrapositive approach in item two, above.

If rank 1 2( ) ( 1)kp p p n   for some 1 21 kp p p N     and

( )kx p is not zero valued for all pk then h is not identifiable. If rank

1 2( ) ( 1)kp p p n   then the null space is one dimensional, i.e. a line. Any h

on this line is unique to within a scaling factor. For h to span the null space, outputs

( )kx p corresponding to rows of 1 2( )kp p p  must all be zero due to the

definition of a null space. Say, for example,  below, is non-zero. Then, as described

above, the situation could exist where the nonlinear function 1( ( ))f x p  as well as

1( ( ))f x p  . This would make h not identifiable.

11

22

( )( )

( ) 0( )

( ) 0( )

T

T

T
kk

y pp

y pp
h

y pp







     
     
      
     
      

   

 
(2.27)

Thus identifiability implies both rank 1 2( ) ( 1)kp p p n   for some

1 21 kp p p N     and ( )kx p is zero valued.

From the above results, it is obvious that to identify h, output samples have to be

collected when ( ) 0ky p  . Exact values of ( ) 0ky p  are unlikely in practice. Practical
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system identification will have to rely on samples collected when ( ) 0ky p  . In the

following, we show that these will work if a small identification error is allowed. To this

end we need some preliminary analysis.

Let 1 2, , , ne e e be an orthonormal basis of n with ne h . Recall that 1h 

Given any small 1 0  , construct a cone iC around ie for 1, 2, ,i n  . For

 1, 2, , 1i n  :

   1 1( ) cos ( , ) 1i iC e        (2.28)

In Figure 8, the bottom of these cones appears truncated due to the constraint 1a   ,

where a is defined in Lemma 2.1. For i n :

 1 1( ) cos ( , ) 1n nC e        (2.29)

And also 0    . See Figure 8 for a three dimensional illustration.

Under the conditions of Lemma 2.1, for any 0  and 0 1a  , there exists a

small  , 0f a   so that for all 1  , we have:

( ) , ( )

cos( ( ( ), ( ))

( ) ( ) ( ) ( ) cos( ( ( ), ( ))

i l

T

i C l C

i l

i l i l i l

 

  

      

 

 

  

(2.30)

1

2

( )

( )

...

( )

T

T

T
n

i

i
rank n

i







 
 
  
 
 
  

(2.31)

if 1 1 2 2( ) ,..., ( ) , ( ) ni C i C n C     . Now consider a sample matrix with ( 1)n  rows.

Let ( ) ii C  for  1,2,..., 1i n  . We can write:



www.manaraa.com

27

,1 1 ,2 2 , 1 1 ,( ) ...i i i n n i ni e e e h          (2.32)

Where ,i j for 1, 2, , 1i n   and 1, 2, ,j n  are the projection coefficients of

( )i into the orthonormal basis (e1, e2 … en) = (e1, e2 … h). Since all the ( )i for

1, 2, , ( 1)i n  have a constraint 1a   , the projection coefficient matrix is strictly

diagonally dominant, for sufficient small : , ,
1

1,2,..., 1
n

i i i j
j
j i

i n 



  

1,1 1,2 1, 1

2,1 2,2 2, 1

1,1 1,1 1,

(1)

( 2)

( 1)

T
n

T
n n n n n

T
n n n n

e

n e

n h

  

  

  

   

  

    
    
     
    
    

     



    





(2.33)

The last column is very small since it is the projection of the first  1n  cone vectors

onto true coefficient vector h.

Figure 8: Cone construction for three dimensions

1e

3e h

2e

(2) 1a  

3C

1C

2C

(1) 1a  

(3) 
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The following theorem helps explain why single point system identification is

possible when, instead of being equal to zero, outputs are only close to zero. This result

shows the practicality of the single point a priori information system identification

approach.

Theorem 2.3:

From Assumption 2.3, we have nonlinearity a priori point information,

( ) 0 0f x x   , and  f  is continuous in a neighborhood of the origin. Also

assume that the PDF of  u  has a positive support containing a non-empty

interval ,a a for some 0 1a  .

1. Given any small 0  , with probability one as N  there exists a

sequence ( )li for l=1,2,…,n such that ( ) ( )l lx i i h    and rank

1 2( , , )ni i i n  .

2. The matrix 1 2( , , )ni i i  can be written as: 1 2( , , ) ( )ni i i Q E    .

For some Q and ( )E  , where rank Q = n-1, independent of  , and

( ) 0E   as 0  . Further, let the singular value decomposition

(SVD) of  be  1 2 1 2( , , ) ( ) ( ) ( ), ( )... ( )
T

n ni i i U v v v e      . Then,

( ) 0nv h   as 0  (modulo  signs).

Proof:

To prove part 1 of Theorem 2.3, consider a set of input sample indexes that select

a matrix of non-overlapping input sample vectors, 1 2( , , , )np p p  , that inhabit the

cones described previously. To make the proof simpler, the input sample vectors are
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statistically independent and non-overlapping1.

Consider a set of indexes 1 2 k np p p p    where 1p is in the range

20, N n   and 1l lp n p   . For any 0,  there is probability 0  for each set of

indexes such that:

1 1

1 1

( )

( )

( )

n n

n n

p C

p C

p C






 








(2.34)

In other words there is non-zero probability  that ( ) ( )T
i ix p p h   for i=1,2, …n

and at the same time:

1

1

( )

( )

( )

T

T
n

T
n

p

rank n
p

p








 
 
  
 
 
  


(2.35)

Note that:

1. ( )T
ip h  for 1, 2, , 1i n   because h = en and ( )i ip C  .

2. ( )T
np h  because 0 ( )np   and ||h|| = 1.

For each set of indexes 1 2 k np p p p    starting at some randomly chosen

1p , define the event:
1pA = {at least one ( )i ip C  for 1, 2, ,i n  } and also

 
1pP A  . If m is the number of such index sets then, due to the Assumption 2.2 and

the independence of ( )np , we obtain:  
1 2

... (1 ) 0
m

m
p p pP A A A       as

1 In the simulation we will let the sample vectors overlap. Even though the sample vectors may not be
independent they can still be at right angles to each other.
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m  . This says that the probability is zero of sample vectors not lining up in

orthogonal cones for any value of m as m  . Furthermore, because
1

(1 )m

m






   ,

the Borel Lemma ([27], page 240) tells us that the convergence in probability is changed

to convergence with probability one as N  . Thus (2.34) is true with probability one

for some set of indexes 1 2 k np p p p    as N  . This completes the proof of

part 1 of Theorem 2.3.

For part 2 of the proof we note that from (2.32) and the above proof:

,
1

( )
j

n

j i k k
k

i e 


 for 1, 2 ,nj   . Note that ,( ) ( )
nn n n i ki C i         . If we

assume that ne h , on a rectangular axis and the other basis vectors are at right angles

then the requirement ( )T
ip h  for 1, 2, ,i n  implies a diagonal dominance, in the

first  1n  rows. In the construction below, h is a null space basis for Q

 

1 1 1

1 1 1

1 1 1

,1 ,2 ,
1 1

1 1
,1 ,2 ,1 1

,1 ,2 ,

,1 ,2 , 1

...( )

... ... ... ... ...
, , ,

...( )

( ) ...

...

... ... ... ...

n n n

n n n

n

T T
i i i n

n n T T
i i i nn n

T T
n ni i i n

i i i n

i

i e

i i i
i e

i h

  

  

   

  



  





 



    
    
           
    
        





1

1 1 1 1

,
1

,1 ,2 , 1 ,2

1,1 ,2 , 1 ,

......

...

...

n n n

n n n n

T
i n

T

T
i i n i nn

T
ni i i n i n

e

h
e

e



  

   
   



    
    
         
    
        

(2.36)

Define:

1 1 1 1

1 1 1 1

,1 ,2 , 1 ,
1

,1 ,2 , 1 ,2

1,1 ,2 , 1 ,

...

... ... ... ... ......
, ( )

...

...

n n n n

n n n n

T
i i i n i n

T

T
i i i n i nn

T
ni i i n i n

e

Q E h
e

e

   


   

   
   



 



    
    
         
    
        

(2.37)
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Since 1h  and nh e is orthogonal to ie for 1, 2, , 1i n   :

1 1 1 1 1

1 1 1 1 1

1 2

,1 ,2 , 1 , ,
1

,1 ,2 , 1 , ,2

1,1 ,2 , 1 ,

( , , , ) ( )

...

... ... ... ... ... ......

...

...

n n n n n

n n n n

n

T
i i i n i n i n

T

T
i i i n i n in

T
ni i i n i n

i i i h Qh E h

e

h h h
e

e



    

    

   
    



 



   

    
    
          
    
        



1

1

,

( )

...

( )

( )
n

n n

ni n

x i

x i

x i



   
   
      
   
    

(2.38)

Thus ,( ) 0
jj i nx i     and ( ) 0E   as 0 

Moreover, rank 1 2( , , , )ni i i n  and rank of ( ) 1E   implies rank Q is  1n 

and 0Qh  . In addition, considering the hypothesized vector basis, the matrix:

1 1 1

1 1 1

,1 ,2 , 1

,1 ,2 , 1

,1 ,2 , 1

...

... ... ... ...

...

...

n n n

n n n

i i i n

i i i n

i i i n

  

  

  
  







 
 
 
 
 
  

(2.39)

is strictly diagonally dominant and , 0
ni k   as 0  . This implies rank Q is

 1n  , independent of  by the Gerschgorin Circle Theorem (see [17], page 320). From

[23], each of the  1n  singular values of Q is in a ball centered at ,i i with radii defined

by:
1

, ,
1 1

1

2

n n

i i j j i
j j
j i j i

r  


 
 

 
  
  
 

 

The diagonal dominance and the Gerschgorin Circle Theorem insure that the

singular values and singular vectors corresponding to the first  1n  rows of ( )Q E 

remain there and the last singular value and singular vector remains associated with nh .

Now write 1( ,... )T
Q Q Q Qn QnQ U V V h V    (modulo  sign). Clearly:



www.manaraa.com

32

 1 2 1 2( , , , ) ( ) ( ) ( ), ( )... ( ) ( )
T

n ni i i U V V V Q E          (2.40)

and by the Wielant-Hoffman Theorem [17]: ( ) 0Qn nV V   as 0  Therefore, as

0  :

( ) ( ) 0n n Qn QnV h V V V h       (2.41)

Thus as 0  , the last singular value of the SVD of  is close to zero. As described

above, the corresponding singular vector becomes close to h. (see [8]). Thus,  starts to

exhibit rank deficiency as 0  . This completes the proof. Based on the theorem, we

introduce the identification algorithm.

Simulation testing

Using the same Wiener model as in the previous simulation (see Figure 5 and

Figure 6) the following algorithm was simulated:

1. Collect a set of  y k and corresponding ( )k for 1, 2, ,k N 

2. Construct matrix 1 2( , , , )Mi i i  of ( )k for 1, 2, ,k M  corresponding to

( )y k  . Note that M N .

3. Calculate SVD of  1 2 1 2( , , , ) ( ) ( ) ( ), ( ), , ( )
T

M ni i i U V V V       

4. Define ˆ
nh V  so that the first non-zero element of ĥ is positive.

Results of an average of 10 Monte Carlo runs of the algorithm are shown in Table 3. The

estimation error is defined as ˆMSE h h=‖ ‖. Note that at the top of each column the

variable  is chosen differently for each SNR. A simulation that varied  and monitored

MSE was run to determine the best  for a fixed N and SNR. The  that resulted in the
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lowest MSE was simply read for the graph in Figure 9.

There is a practical concern with the size of M, the number of rows in

1 2( , , , )Mi i i  . As M gets larger and larger, computer hardware configurations can run

out of memory and/or take an excessively long time. To alleviate this problem,  should

be as small as possible consistent with low MSE, as demonstrated in Figure 9. Note that

for some of the entries in Table 3, M is limited to 900 to avoid a memory overrun

problem.

The idea behind this algorithm is to use local data near ( ) 0y k  to identify the

linear part without interference from the unknown nonlinearity. In fact, measurements

corresponding to | ( ) |y k  are not used. From the theorem, ĥ h if  is small and

further ĥ h as 0  at least in the absence of noise. A caution should be noted. The

algorithm throws away all data observed with magnitudes larger than  . For small  ,

fewer data is retained to construct the estimate. Therefore, it takes a much longer time to

collect the same number of data useful for construction of the estimate for a small  than

a large  . Observe from Table 3 that for the smallest 0.016  , N = 20000 is required

to collect M = 421 rows at SNR = 40dB. Thus considerable data is discarded.

N SNR = 5dB
0.1 

SNR = 10dB
0.046 

SNR = 20dB
0.041 

SNR = 40 dB
0.016 

MSE M MSE M MSE M MSE M
5000 0.1237 501 0.092 272 0.028 266 0.0068 106
10000 0.0952 900 0.066 549 0.021 536 0.0046 211
20000 0.0946 900 0.054 900 0.016 900 0.0034 421

Table 3: FIR single point simulation results
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Figure 9: Variation of estimation error with  , N=20000

The choice of  is reminiscent of the choice of the bandwidth in kernel

identification [13, page 20]. Kernel estimation attempts to estimate the output of an

unknown function for a given single input point. Output values are weighted by the

distance between their corresponding inputs and the given input. The output points that

correspond to inputs very close to the given input are given the highest weight. Thus a

neighborhood of inputs and corresponding outputs averaged is formed. The size of the

neighborhood is controlled by the kernel “bandwidth”. A large bandwidth results in a

large neighborhood of output points averaged and a small variance. However, because

the set of points in the output average is more likely to be distributed asymmetric with

respect to the true output, a larger bandwidth can result in a larger bias.
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In this situation, larger  results in many more sample vectors in 1 2( , , , )Mi i i  .

However, because the shape of the unknown nonlinearity does not have to be symmetric

around the origin, there is a possibility of introducing bias in the estimate. The SVD

produces the best estimate of null space basis vector ( )nh V  when the sample vectors

landing inside the cones in Figure 8 are symmetrically distributed around the center axis

of each cone. A larger  leading to a larger cone solid angle increases the possibility of

asymmetry and bias.

Thus increasing  tends to reduce the variance but at the same time to increase

the bias. The best choice is to balance between the bias and the variance.

Locally monotonic nonlinearities

For quadrant a priori information, Assumption 2.1 defined quadrant conditions on

the nonlinearity. For single point a priori information, Assumption 2.3 replaced quadrant

conditions with a requirement for continuity around a single known point. In this section,

the requirement is local monotonicity of the nonlinearity.

Assumption 2.4:

Assume there exists an interval f f M  and within the interval

( ) , , (.)f x f f f   is continuous and 1 2 1 2( ) ( )f x f x x x   .

Clearly,  f  is monotonic if ( ) ,y f x f f    .

Now define:

( , ) ( ) ( )

( , ) ( ) ( ) ( ( )) ( ( ))

i j i j

z i j y i y j f x i f x j

   

   
(2.42)

Note that because of linearity, ( , ) ( ) ( )i j i j    can be considered an input to
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the linear system and  ,z i j can be considered the corresponding valid output. Notice

that if ( , ) ( ) ( ) ( ( )) ( ( )) 0z i j y i y j f x i f x j     and ( ( )) , , ( ( )) ,f x i f f f x j f f       

then we have     0x i x j  . By collecting pairs of input vectors ( ), ( )i j  that

correspond to outputs whose difference is zero, we can cast identification of h under the

locally monotonic prior information into identification under point prior information.

Consider that  in (2.42) can be considered equivalent to  in Lemma 2.1. Thus, we

can identify h by selecting pairs of ( ), ( )i j  whose difference makes the output

difference close to zero. Previously derived results can be used to show that our modified

input sample difference matrix and output difference vector can uniquely identify h. The

following theorem helps explain why locally monotonic system identification is possible.

Theorem 2.4:

Consider Assumption 2.4. Further assume that the input samples ( )u k are i.i.d.

(not necessarily Gaussian) and the probability density dunction of ( )y f x is

positive in an interval ( ) ,f x f f   . Then:

The first claim is that unknown coefficient vector h is identifiable if and

only if there exists index sequences 1 mi N  and 1 mj N  for 1, 2, ,m k 

so that ( ), ( ) ,l ly i y j f f    and ( , ) ( ) ( ) 0l l l lz i j y i y j   for 1, ,l k 

In addition, the corresponding matrix (1, 2, , )k  satisfies:

1 1

2 2

( ) ( )

( ) ( )
(1,2, , ) ( 1)

( ) ( )

T T

T T

T T
k k

i j

i j
rank k rank n

i j

 

 

 

 
 

    
 
   



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Secondly, for any small 0  , with probability one as N  , there

exists two subsequences: ( )li and ( )lj , for 1, ,l n  such that

( ( )), ( ( )) ,l lf x i f x j f f    and ( ( )) ( ( ))l lf x i f x j   and:

1 1

2 2

( ) ( )

( ) ( )
(1,2, , )

( ) ( )

T T

T T

T T
n n

i j

i j
rank n rank n

i j

 

 

 

 
 

   
 
   




Finally, the matrix (1, 2, , )n  can be written as

(1, 2, , ) ( )n Q E    for some Q and ( )E  where rank  1Q n  ,

independent of  and ( ) 0E   as 0  . Further, let the SVD of (1, 2, , )n 

be:  1 2(1,2,..., ) ( ) ( ) ( ), ( )... ( ) ( )
T

nn U V V V Q E          Then, modulo 

sign: ( ) 0nV h   as 0  .

Proof:

The proof is a straightforward externsion of the results derived for single point a

priori information. In the proof of Theorem 2.3 replace  by  , ( )x k by ( ) ( )l lx i x j

and ( )y k by ( , ) ( ) ( )l l l lz i j y i y j  . As in the previous section, the result is that as

N  , there are guaranteed to exist n rows of  such that ( ( )) ( ( ))l lf x i f x j   and

at the same time rank  is ( 1)n  .

Indexes mi and mj have no particular order, however they index pairs of input

sample vectors that correspond to zero difference outputs:
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1 1 1 11 1

2 2 2 22 2

( ) ( ) ( ) ( ) 0( ) ( )(1)

( ) ( ) ( ) ( ) 0( ) ( )(2)
(1,2, , )

( ) ( ) ( ) ( ) 0( ) ( )( )

T TT

T TT

T TT
k k k kk k

x i x j y i y ji j

x i x j y i y ji j
k h h h

x i x j y i y ji jk

 

 

 

         
      

            
      
                  


  


 
 
 
 



Figure 10 shows a simple illustration of this algorithm. The top graph,  y k , is a

small record of output samples. The center graph,  sy k , is the same record sorted

lowest to highest in magnitude. Note how the sample indexes get mixed up. Finally the

bottom graph, ysd(k), is the result of two-point differencing ys(k). In the bottom graph

four differenced samples are less than  . The corresponding input sample vectors are:

9 8 9 89 8

2 5 2 52 5

10 010 0

4 74 7

( ) ( ) ( ) ( )( ) ( )(1)

( ) ( ) ( ) ( )( ) ( )(2)
(1,2,3,4)

( ) ( ) (( ) ( )(3)

( ) ( )( ) ( )(4)

T TT

T TT

T TT

T TT

x i x j y i y ji j

x i x j y i y ji j
h h h

x i x j y ii j

x i x ji j

 

 

 

 

      
    

         
    
             

10 0

4 7

) ( )

( ) ( )

y j

y i y j









   
   
   
   
   

   

Assume that 4n  . If  is small enough and rank (1, 2,3, 4) is 3 or 4, then the

SVD can be used to identify h.

Based on the above theorem, we can define the identification algorithm to be used

for locally monotonic a priori information on the nonlinearity. The next section presents

simulation results. An important simulation observation is that the locally monotonic a

priori information seems to perform better than the single point a priori information

algorithm. A reasonable explanation is that the locally monotonic algorithm makes use

of data in the entire monotonic output range whereas the single point algorithm uses data

as close as possible to zero. If, for example, the entire nonlinearity is known a priori to

be monotonic then outputs ( )y k and corresponding input sample vectors range over the

entire nonlinearit as long as their respective difference is zero. Contrast this with the

single point algorithm where only outputs near the origin are useful.
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.


( )sdy k

( )sy k

( )y k

Figure 10: Example of sample collection for locally monotonic algorithm
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Simulation testing

Using the same Wiener model as in the previous simulation (see Figure 5 and

Figure 6), the following simulation steps were implemented:

1. Collect a set of  y k and corresponding ( )k for 1, 2, ,k N 

2. Sort the  y k from least to greatest, result is  sy k .

3. Construct 1 2( , , , )s Ni i i  corresponding to  sy k .

4. Construct  sdy k by differencing adjacent points of  sy k .

5. Construct 1 2 1( , , , )sd Ni i i   by differencing rows of 1 2( , , , )s Ni i i  .

6. Construct 1 2( , , , )sd Mi i i  corresponding to ( )sdy k 

7. Calculate SVD  1 2 1 2( , , , ) ( ) ( ) ( ), ( ), , ( )
T

sd M ni i i U V V V       

8. Define ˆ
nh V  so that the first non-zero element of ĥ is positive.

Results of an average of 10 Monte Carlo runs of the algorithm are shown in Table 4. The

estimation error is defined as ˆMSE h h=‖ ‖. Note that at the top of each column the

variable  is chosen differently for each SNR. A simulation that varied  and monitored

MSE was run to determine the best  for a fixed N and SNR. The  that resulted in the

lowest MSE was simply read for the graph in Figure 11.

As previously discussed for the the single point algorithm simulation, as M gets

larger and larger, computer hardware configurations can run out of memory and/or take

an excessively long time. To alleviate this problem,  should be as small as possible

consistent with low MSE, as demonstrated in Figure 11. Note that for some of the entries

in Table 4, M is limited to 900 to avoid a memory overrun problem.
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N SNR = 5dB
0.096 

SNR = 10dB
0.046 

SNR = 20dB
0.041 

SNR = 40 dB
0.041 

MSE M MSE M MSE M MSE M
5000 0.1372 425 0.089 242 0.030 235 0.0032 240
10000 0.0094 842 0.065 484 0.021 473 0.0019 503
20000 0.0765 900 0.047 900 0.014 899 0.0016 900

Table 4: FIR locally monotonic simulation results

Figure 11: Variation of estimation error with  , N=20000

This algorithm seems to perform better. One explanation is that this algorithm

utilizes the data [ 0.5, 0.5]y  and the previous one only uses the data y close to zero.

Simply put, more data is allowed for this algorithm than the previous one and thus the

effect of noises is averaged out more for a better estimate.
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CHAPTER 3
IIR LINEAR PART IDENTIFICATION

Equation Chapter (Next) Section 1

This chapter shows how the impulse response of the IIR linear part of a Wiener

system may be identified using a carefully defined set of minimal a-priori information on

the nonlinear part.

Problem statement

For the IIR case, the Wiener system linear and nonlinear parts are described by

0

( ) ( )

( ) ( ( )), 1,2, ,

i

i

G z h i z

y k f x k k N








 





(3.1)

respectively. The problem discussed in this chapter is to estimate the unknown transfer

function ( )G z based on the input u(k) and the output y(k).

The linear part ( )G z is assumed to be stable so that | ( ) | ih i M for some

M   and 0 1  . No order information on ( )G z is available, unless otherwise

specified. The input, internal signal and output at time 0,1, ,k N  are represented by

( )u k , ( )x k and ( )y k respectively. The internal signal ( )x k is unavailable for

identification. The nonlinearity is unknown but bounded for bounded inputs. No

structural a priori information on (·)f is assumed.

Because of embedded scaling ambiguity in Wiener systems, either the linear part

or the nonlinear part has to be normalized for identification purpose. It is assumed in this

chapter that:

2 2

0

( ) 1
i

h h i




  (3.2)
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Where ( (0), (1), )Th h h  is an infinite dimensional vector representing the impulse

response of the linear part. Further, it is assumed that the first non-zero entry of h is

positive. All these assumptions are standard to guarantee identifiability. Throughout the

paper, it is also assumed that the input ( )u k is a bounded independent identically

distributed (i.i.d.) random sequence and its probability density function is positive over

an interval [ , ]a a for some 0 1a  . No specific distribution on the input is needed

and the actual distribution could be unknown. Clearly, all the signals ( )u k , ( )x k and

( )y k are bounded because of the stability and boundedness of the input.

The goal of identification is to determine an estimate
0

ˆˆ ( ) ( ) i

i

G z h i z






 of ( )G z ,

based on the input-output data up to time N with little a priori information on the

unknown nonlinearity (·)f , specified later in subsequent sections, so that:

21 ˆ| ( ) ( ) | 0
2

j jG e G e d


 




 
  (3.3)

as N  in some probability sense, preferably convergence with probability one. Note

again that no order information on ( )G z is available. Now, observe that if the estimate

ˆ ( )G z is stable, then:

   
22 2

0

1ˆ ˆ
2

ˆ( ) ( ) j j

i

h i h ih h G e G e d


 








 

    (3.4)

where ˆ ˆ ˆ( (0), (1), )Th h h  is the impulse response vector of the estimate ˆ ( )G z . Thus, the

identification problem is equivalent to finding ĥ of h so that ĥ h . Now, given a

positive integer n, define:
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( (0), (1), , ( 1))

ˆ ˆ ˆ ˆ( (0), (1), , ( 1))

T
n

T
n

h h h h n

h h h h n

  

  
(3.5)

Because of the stability assumption, 2

0

( ) 1
i

h i




 , we have 2( ) 0
i n

h i




 as n  .

Thus ĥ h if and only if ˆ
n nh h as n  . Further, 1nh ‖ ‖ implies:

ˆ ˆ ˆn n n n
n n n n n n

n n n n

h h h h
h h h h h h

h h h h
       = (3.6)

The second term goes to zero as n  and therefore, as n  :

ˆ ˆ ˆ0 0 0
n

n
n

n n

h
h h h

h
h h       (3.7)

What we have to do is to identify the normalized first n taps of the impulse response of

the unknown linear part. In short, to overcome the problem of unknown order, we find

the impulse response.

Single point a priori information

In this section we consider identification of the linear part with a priori

information  0 0f x y on the unknown nonlinearity for some 0x and 0y . For

simplicity, 0x and 0y are assumed to be at the origin.

Assumption 3.1:

  0 0f x x   and  f  is continuous in the neighborhood of the origin.

The condition is based on the local information  0 0f  however it is stronger

than the local point condition  0 0f  . Note that   0 0f x x   provides some

global information on the nonlinearity since no other values of x could lead to   0f x  .
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Because no other a priori information on the unknown  f  is available, all the

observed outputs   0y k  do not reveal anything about their corresponding inputs  x k

or  f  . In other words, theoretically only the outputs   0y k  together with

corresponding inputs  u k are useful for identification. Practically, however,   0y k 

is unlikely to occur, especially in the presence of noise. A practical identification

algorithm is based on the hope that, by the continuity of  f  in the neighborhood of the

origin, all the data   0y k  imply   0x k  and these data result in an estimate ˆ
nh close

to n nh h . Thus the analysis contains two parts. The first part is to show that n nh h

can be identified if there are enough data available under the constraint   0y k  . Then

we will show that with the data set  y k  for some small 0  , the obtained

estimate is a continuous function of  and converges to n nh h as 0  .

For each n, consider a fictitious FIR system:

( )

( )

( 1)1
( ) ( (0), (1), , ( 1))

( 1)

n

n

k

u k

u k
x k h h h n

h

u k n



 
 

  
 
 

  






(3.8)

where ( (0), (1), , ( 1)) 0T
nh h h h n   is automatically satisfied for large n because

1nh h  . Given input-output data set  
1

( ), ( )
N

n k y k Chapter Two showed that

n nh h is identifiable for this fictitious FIR linear system based on the point a priori

information  0 0f  if and only if there exist some 1 21 kp p p N     so that
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     1 2 0kx p x p x p    (or equivalently      1 2 0ky p y p y p    and the

corresponding matrix  1 1, , , kp p p  satisfies:

 
 

 
1 2

1

2

( , ..., )

rank 1.

k

T
n

T
n

T
n k

p p p

n

p

p

p









 
 
 
 
 











(3.9)

This is because  1 1, , , kp p p  satisfying (3.9) has a one dimensional null space

spanned by any scaled versioned of nh . Chapter Two showed that if:

   1 1 1 2, , , , , ,
T

k np p p U V V V    (3.10)

is the singular value decomposition (SVD) of  1 1, , , kp p p  then it follows that

n n nV h h modulus  sign. Therefore, n nh h is identifiable from the SVD of

 1 1, , , kp p p  for data      1 2 0ky p y p y p    .

Now we are going beyond the FIR identification of Chapter Two and attempting

to identify an IIR linear part of a Wiener system. Write the IIR system as

( ) ( ) ( ) ( )n n
i n

x k h i u k i h k




   (3.11)

and also define:

( ) [ ( ) ( ) ( )]/ ( ) n
n n

i n n

h
z k x k h i u k i h k

h






    ‖ ‖ (3.12)

If      1 2 0kz p z p z p    , the same conclusion discussed above applies. Making

use of the fact that, for a stable linear system, large n, 1  and constant M results in:
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( ) ( ) 0n

i n

h i u k i M




   (3.13)

we conclude that   0y k  implies   0z k  and also   0x k  . The question is if the

SVD of  1 1, , , kp p p  will provide a vector nV that is close to n

n

h

h
when  (as

defined in the previous chapter) is small but not zero. First, some preliminary work.

Given n, define the orthonormal basis functions: 1 2 1, , , ne e e  and n
n

n

e
h

h
 in

n . As shown for 3n  in Figure 8, construct a truncated cone iC around each ie for

1, 2, ,i n  as follows. For 1, 2, , 1i n  we require:

0 1
2

i

a
C      (3.14)

Given  ,a a for 0 1a  is the interval over which the input probability density is

positive. Now, if  , je is the angle between  and je , in addition to (3.14) we define

for each 1, 2, , 1i n  :

8

9
( ( , ))

9( 2)

j

if j i

cos e
a

if j i
n




 

  
 



(3.15)

For i n we require:

0 ( )nC n      (3.16)

8

9
( ( , ))

9( 2)

j

if j n

co

if j n

s e
a

n




 

  
 



(3.17)
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Where ( ) 0n n  as n  . If nC  we have:

1, 2, , 1
, ·| ( ( , )) | 9( 2)i i i

a
i n

e e cos e n

i n


  



  
         
  


(3.18)

and similarly for iC  , 1, 2, , 1i n  :

8 4

2 9 9
, ·| ( ( , )) |

9( 2)

j j j

a
a j i

e e cos e
a

j i
n

  

   
    
   

   
  
 

(3.19)

Note that for (3.15) to (3.19) we need 2n  ; a practical case for an FIR filter.

Recall the definition ( ) ( ( ), ( 1),..., ( 1))T
n j j j ji u i u i u i n     . Write each ( )n ji in terms

of orthonormal basis functions ie :

1 1 2 2( ) ...n j j j jn ni e e e       (3.20)

ij is the projection of ( )n ji on ie . Now, for some 1 21 ... ni i i N     , we have :

1

1
1 1 1,1 1, 1

1

,1 ,

( ,..., )

1,1 1, 1

( ) ( )
( ) ( )

( ,..., )

( ) ( )
( ) ( )

n

T T
i nn n

n n n

T T
n n n n n n n

n
i n

R i i

n

n

h i u i i
x i i e

h h R i i

x i i e
h i u i i

  

  

 















 
             

          
       

        
 









      







  

 

1,

1

1
1,1 1, 1 1,

1
,1 , 1 ,

( ,..., )

nT

n n
n n n nT

n
n n n n n

Q

T

E

n

e

h R ie i

e





 

  
  




 
 
 
 
  
 

 
  
   
        
        
 







 

(3.21)

Lemma 3.1:

Consider the Wiener system under Assumption 3.1. Then we have:
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Firstly, for any given large n and ( )n satisfying ( ) 0n n  as

n  , with probability one as N  , there exists a

sequence of  n ji for 1, 2, ,j n  so that | ( ) |jy i  and:

1

2
1

( )

( )
( ,..., ) 1

( )

T
n

T
n

n

T
n n

i

i
rank i i rank n

i







 
 
    
 
  
 



Secondly, the matrix  1, , ni i  can be written as 1( ,..., ) ( )ni i Q E   

for some Q and  E  , where rank 1Q n  independent of  and   0E   as

0  . Further, let 1 1 2( ,.., ) ( ) ( )( ( ), ( ),..., ( ))T
n ni i U V V V       be the SVD of

 1, , ni i  . Then, modulo  signs, ( ) 0n
n

n

h
V

h
  

‖ ‖
as n  .

Proof:

The proof of the first part is essentially the same as for the FIR case in Chapter

Two by noting 1( ,..., ) 0nR i i  as n  .

To show the second part, consider a submatrix as in (3.21):

1,1 1, 1

1,1 1, 1

n

n n n

 

 



  

 
 
 
 
 



  



(3.22)

By the construction of the cones iC for 1, 2, , 1i n  and the definition of  n ji , it

follows from (3.19) that for the submatrix of (3.22):

4
,   , 

9 9( 2)
ii ij

a
a i j

n
   


(3.23)
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This leads to:

1 1

1, 1,

1 4 1 2( 2) 4 1 3

2 9 2 9( 2) 9 9 9

n n

ii ji ij
j j i j j i

n a
a a a a

n
  

 

    

   
         

  
  (3.24)

By the Gershgorin Theorem [23] on singular values, the right side of (3.24) is also a

lower bound on the smallest singular value of (3.22). Thus the singular values of the

above submatrix (3.22) satisfy:

1 2 1

3
...

9
n a       (3.25)

Independent of n. Further, by the usual definition of orthonormal basis vectors we have:

1

2
1 2 1

1

( , , , )

1 0 0

0 1 0

0 0 1

T

T

n

T
n

e

e
e e e

e





 
 
   


 
 
 
 
 



 
  
 





   




(3.26)

To show that rank 1Q n  , we write Q as the sum of the submatrix (3.22) and a

perturbation:

1,1 1, 1

1 1

1,1 1, 1

1 1
,1 , 1

0 0

0 0

0 0

n T T

n n n T T
n n

n n n

e e

Q

e e

 

 

 



  

 


  
     
           
         

   



    
 





(3.27)

Taking note of (3.26) and also:

,1 , 1,...,n n n     (3.28)

We have from the Wielandt-Hoffman Theorem [8] for singular values that, for

large n, the first 1n singular values of Q satisfy:

 1 2 1

3 2

9 9
n a O n a         (3.29)
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Observe from (3.27) that 0nQh  because n ih e for 1, 2, , 1i n  . This

implies that the last or smallest singular value 0n  and rank 1Q n  for all n.

In addition, ,| |n j  implies ( ) ( ) 0E O n   as n  . Now define

1( ,..., )T
nQ U V V  and:

1( ) ( ) ( )( ( ),..., ( ))T
nQ E U V V       (3.30)

It is clear that /n n nh h V ‖ ‖ and what is left to show is that ( )n nV V  when n gets

larger. To this end, again by the Wielandt-Hoffman Theorem for singular values [8], the

gap between the smallest singular value and the second smallest singular value of the

matrix ( )Q E    is bounded below by:

1 1

2 1
( )

9 9
n n n a O n a        (3.31)

Now, we apply a version of the Wielandt-Hoffman Theorem for singular vectors [8]:

1

( ) ( )
( ( ( ), )) 0

( ) ( ) ( )
9

1n n

n n

O n O n
sin V V

O n a O n

 


   

   
  

(3.32)

as n  . Since ( ) 1n nV V   , the conclusion ( ) n
n n

n

h
V V

h
   follows. This

completes the proof.

Theorem 3.1:

Let ˆ ˆ ˆ( (0),..., ( 1)) ( )n nh h h n V     be the estimate of n

n

h

h
so that the first non-

zero entry is positive and
1

0

ˆˆ ( ) ( )
n

i

i

G z h i z






 . Then, as n  ,
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21 ˆ( ) ( ) 0
2

j jG e G e d


 




 

 

Proof:

Theorem 3.1 is a direct consequence of the above Lemma 3.1.

Based on the results, we can collect the data set

1 2| ( ) | , | ( ) | , ..., | ( ) |ny i y i y i     so that rank 1 2( , ,..., ) 1ni i i n   . Then, the SVD of

1 2( , ,..., )ni i i provides the estimate ˆ ( )n nh V  modulus  sign. A problem is that only

data at time index 1 2, ,..., ni i i are used and all other data is discarded. This is not efficient

and in fact is not robust in the presence of noise. An efficient way is to use all the data

| ( ) |y k  and the corresponding matrix  . The analysis as discussed before carries

over with no or minimal modifications. However at the same time, since more data is

used, the average effect of the noise is reduced making the identification algorithm more

robust. We are now in a position to introduce the identification algorithm based on point

a priori information.

Simulation testing

Consider the system shown in Figure 16 under Assumption 3.1. The following

are the steps of a practical identification algorithm with point a priori information

(0) 0f  :

1. Collect data ( )u k 's and ( )y k 's, 1, 2,...,k N .

2. For each n, construct a submatrix 1 2( , ,..., )li i i of (1, 2,..., )N by deleting k's

row if | ( ) |y k  , where 0n  as n  .

3. Calculate SVD 1 1( ,..., ) ( ) ( )( ( ),..., ( ))T
l ni i U V V      .
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4. Define ˆ ( )n nh V   so that the first non-zero element of ˆ
nh is positive.

5. Set
1

0

ˆˆ ( ) ( )
n

i

i

G z h i z






 .

Then, from the lemma and theorem, for each n, ˆ /n n nh h h ‖ ‖ as N  .

Further, as n gets larger and larger, ˆ
nh h and ˆ ( ) ( )j jG e G e  in the integral least

squares sense.

We comment that in the algorithm, the choice of  is not unique. Small 

discards more data and results in fewer data to construct the estimate. Thus, it takes a

longer time to collect the same number of data useful to construct the estimate for a small

 than a large  . On the other hand, however, a large  collects larger ( )y k which

results in ( )x k that is further from the neighborhood of zero. Clearly, this tends to

increase the bias and, at the same time, to reduce the variance because more and more

data can be used. So the choice of  is to balance the bias and variance which is

reminiscent of the choice of the bandwidth in kernel identification [13]. The idea is to

use local data near ( ) 0y k  to identify the linear part without interference from the

unknown nonlinearity. Of course, preferably, any choice of  needs to be tested on a

fresh data set for validation purpose.

We now provide a numerical simulation. Let the linear part be an 4th order

system

2

4 2

0.7616 0.6160
( )

0.223 0.41

z
G z

z z




 
(3.33)

and the nonlinear part be a non-continuous, non-symmetric and non-monotonic

nonlinearity shown in Figure 6:
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0.5 0.2 0.2

( ) 1.2 0.2 ( ) 0.8

0.3 0.5 0.8

x x

y f x x x k

x x

  


    
  

(3.34)

The input ( )u k is i.i.d. uniformly in [ 1,1] and Gaussian noise is added to the output.

For this IIR case, the estimate is defined as ˆ ˆ ˆ( (0),..., ( 1),0,0, )Th h h n   .

To demonstrate the performance of the identification, the algorithm has been

simulated for a number of SNR levels and various choices of thresholds  and data

length N. All the results are the averages of 10 Monte Carlo simulations. Table 5 shows

the estimation error ˆMSE h h  for various  , N and SNR, with n =30. Similar to

previous simulations, Figure 12 was used to find good settings for  .

Figure 13 shows the frequency domain match between ˆ ( )jG e  and ( )jG e  for the

case of N = 20000, SNR = 20dB and 0.066  . Most of the mismatch is in the stop

band null. This is due to the error sensitivity of the singularity associated with the null.

N SNR = 5dB
0.071 

SNR = 10dB
0.071 

SNR = 20dB
0.066 

SNR = 40 dB
0.021 

MSE M MSE M MSE M MSE M
5000 0.3278 351 0.1567 410 0.0481 420 0.0153 131
10000 0.2311 704 0.0997 802 0.0307 818 0.0092 264
20000 0.1898 900 0.1048 900 0.0314 900 0.0064 526

Table 5: IIR single point a priori simulation results

Choosing  based on Figure 12 is an attempt at optimization. Using Figure 14,

this is also done in the next section on locally monotonic a priori information. A

comparison of Figure 13 and Figure 15 reveals the performance enhancement obtained by

the locally montonic technique.
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Figure 12: Variation of estimation error with  , N=20000

Figure 13: IIR single point simulation result, SNR = 20dB, 0.066 
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Locally monotonic nonlinearities

The idea of point a priori information is that though there is no other information

about the nonlinearity, data in the neighborhood of origin could be used to construct an

estimate because the knowledge about the nonlinearity around the origin is known

locally. In this section, we extend the idea to a case where no point a priori information

is available but the nonlinearity is assumed to be locally monotonic. More precisely, it is

assumed that:

Assumption 3.2:

There exists an interval f f     and within the interval ( ) [ , ]f x f f ,

(·)f is continuous and:

1 2 1 2( ) ( )f x f x x x   (3.35)

Notice that the assumption actually carries some global information on the

nonlinearity. Let  f x f and  f x f . Then, Assumption 3.2 prevents the

nonlinearity from taking any value between f and f anywhere outside of the range

 ,x x . Clearly, (·)f is monotonic if ( ) [ , ]y f x f f  .

Now, define:

( , ) ( ) ( )

( , ) ( ) ( )n n n

z i j x i x j

i j i j  

 

 
(3.36)

It is easily verified that:

( , ) ( , ) ( )( ( ) ( ))T
n n

l n

z i j h i j h l u i l u j l




     (3.37)

This equation is reminiscent of (3.12) and is a key for identification based on point a

priori information. Note from the monotonic assumption:
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( ) ( ) ( ( )) ( ( )) 0 ( ) ( ) ( , ) 0y i y j f x i f x j x i x j z i j        (3.38)

And also:

1| ( ( )) ( ( )) | | ( ) ( ) |f x i f x j x i x j      (3.39)

for small 1 thanks to the continuity of f, if  is small enough. Therefore, by identifying

( , )z i j as ( )x i and ( , )n i j as ( )n i , everything developed for point a priori information

in the previous section can be carried over here.

Theorem 3.2:

Consider the system shown in Figure 16 under Assumption 3.4. Assume that the

probability density function of ( )y f x is positive in the interval [ , ]f f . Then,

Firstly, for any n and 0  so that 0n  as n  , with probability

one as N  , there exist two sequences ( , ) ( ) ( )n l l n l n li j i j    and

| ( , ) | | ( ) ( ) |l l l lz i j y i y j    and:

1 1

1 1

( ) ( )

rank ( , ,... , ) rank 1.

( ) ( )

T T
n n

n n

T T
n n n n

i j

i j i j n

i j

 

 

 
 

    
  



Secondly, the matrix 1 1( , ,... , )n ni j i j can be written as

1 1( , ,... , ) ( )n ni j i j Q E    for some Q and ( )E  , where rank 1Q n 

independent of n and ( ) 0E  ‖ ‖ as 0n  . Further, let the SVD of  be

1 1( , ,... , )n ni j i j . 1 2( ) ( )( ( ), ( ),..., ( ))T
nU V V V      . Then, modulus of  signs,

( ) 0n
n

n

h
V

h
  as 0n  or equivalently

21 ˆ( ) ( ) 0.
2

j jG e G e d


 








 

Proof:
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Theorem 3.2 is a straightforward extension of Theorem 3.1.

The identification algorithm where the unknown nonlinearity is locally monotonic

in [ , ]f f is similar to the identification algorithm for single point a priori information.

Simulation testing

Consider the system shown in Figure 16 under Assumption 3.4. The

identification algorithm has the following steps:

1. Collect data ( )u k 's and ( )y k 's for those ( ) [ , ]y k f f .

2. Sort out the collected data in a decreasing order: 1 2( ) ( ) ... ( )ly k y k y k  

3. For each n and  with 0n  , construct 1 1( , ) ( ) ( )i i i iz k k y k y k   ,

1 1( , ) ( ) ( )n i i n i n ik k k k     . Construct a submatrix 1 1( , ,..., , )n l li j i j of n

by deleting q's row if | ( , 1) |z q q   .

4. Calculate the SVD 1 1 1( , ,..., , ) ( ) ( )( ( ),..., ( ))T
n l l ni j i j U V V     

5. Define ˆ ( )n nh V   so that the first non-zero element of ˆ
nh is positive.

6. Set
1

0

ˆˆ ( ) ( )
n

i

i

G z h i z








We test the algorithm on the same example as in the previous section under the

same input but under the assumption that the nonlinearity is monotonic for | | 0.7y  . As

before, all the results are the averages of 10 Monte Carlo simulations. Table 6 shows the

estimation error ˆMSE h h= for various N, SNR and  with 30n  . Similar to

previous simulations, such as those in Chapter 2 for a priori locally montonic

information, Figure 12 was used to find good settings for  . Finally, Figure 15 shows
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the match between ˆ ( )jG e  and ( )jG e  .

This algorithm seems to out perform the one with point a priori information. One

explanation is that this algorithm utilizes the data [ 0.7,0.7]y  and the previous one

only uses the data y close to zero.

N SNR = 5dB
0.051 

SNR = 10dB
0.041 

SNR = 20dB
0.041 

SNR = 40 dB
0.036 

MSE M MSE M MSE M MSE M
5000 0.3864 228 0.2074 211 0.0591 244 0.0064 211
10000 0.2678 444 0.1382 437 0.0373 473 0.0043 431
20000 0.1641 899 0.0924 857 0.0291 900 0.0028 853

Table 6: IIR locally monotonic a priori simulation results

Figure 14: Variation of estimation error with  , N=20000
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Figure 15: IIR locally monotonic simulation result, SNR = 20dB, 0.041 

Quadrant a priori information

This section discusses Wiener system linear IIR identification with quadrant or

sign a priori information. Two important assumptions are:

Assumption 3.1:

      sign x sign f x sign y 

Assumption 3.2:

The order m of the linear part is known:
1 2

1 2
1

1

( )
m m

m
m m

m

z z
G z

z z

  

 

 



  


  





The unknown, ( )G z , and estimated, ˆ ( )G z , linear subsystems are assumed stable
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and causal.

The Wiener system output error configuration is shown in Figure 16. The entire

system operates on discrete time indexed samples. The top cascade of ( )G z and

 ( )f x k is the unknown system to be identified. Only the input u(k) and the output sign

difference  e k are measurable. All the other signals are unknown but assumed to be

bounded. We also require that  v k is uncorrelated with  u k .

))(( kxf

))(ˆ(ˆ kxf
)(ˆ ky)(ˆ kx

( )G z
( )x k( )u k

( )v k

( )e k

( )y k

ˆ ( )G z

Figure 16: Wiener IIR system identification, quadrant only a priori knowledge

The stability of  G z and ˆ ( )G z implies that  x k and ˆ( )x k are uniformly

bounded for all k provided that the input is bounded. The corresponding impulse

responses are such that, for 0a  :

1 1

(.) ( ) ( )
k k

x a h k a h k
 

 

 
  
 
  (3.40)

1 1

ˆ ˆˆ(.) ( ) ( )
k k

x a h k a h k
 

 

 
  
 
  (3.41)

Assumptions on the input  u k are exactly the same as for the FIR case. That is,
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 u k is i.d.d. with a distribution continuous over an interval  ,a a (the symmetry of a

is for simplicity and not absolutely necessary).

As shown in Figure 17, the static nonlinearities   f x k and ˆ ˆ( ( ))f x k are

assumed to occupy only quadrants one and three. Quadrants two and four would also

work. The idea is that quadrant knowledge gives us the sign of  x k by observing the

sign of  y k . Thus a priori quadrant information about   f x k and ˆ ˆ( ( ))f x k makes

their exact shape irrelevant for this identification technique. Figure 17 shows some

acceptable nonlinearities:

Figure 17: Acceptable nonlinearities for quadrant a priori identification

We define the linear system estimate as the solution to:

2
1 1

ˆ 1( )

ˆ ˆ ˆ ˆ ˆ( ) ( ( ( )) ( ( )))arg min
N

m m
kStableG z

sign y k sign y k   


   (3.42)

Considering the case where v(k) = 0, for any value of N:

2
1 1 1 1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ( )) ( ( ))) 0
N

m m m m
k

sign y k sign y k       


       (3.43)
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And for at least one value of N:

2
1 1 1 1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( ( )) ( ( ))) 4
N

m m m m
k

sign y k sign y k       


       (3.44)

Thus, there is one and only one global minimum achieved at the unknown but true

G(z). This implies that solving the minimization gives rise to the transfer function to be

identified. The key to proving identifiability is to prove (3.44).

Let G(z) and ˆ ( )G z be represented by their impulses  
1

( )
k

h k



and  

1

ˆ( )
k

h k



,

respectively2. Obviously, ˆ( ) ( )G z G z or 1 1 1 1
ˆ ˆ ˆ ˆ( ) ( )n m n m           if and

only if ˆ( ) ( )h k h k for some k. So what we have to show is that ˆ( ) ( )h k h k implies

2ˆ( ( ( )) ( ( ))) 4sign x k sign x k  for some k. Note that for 0n  , ( )x kn and ˆ( )x kn can be

written as:

 ( ) ( ) ( )T
n n

i n

x kn h kn h i u kn i




   (3.45)

 ˆ ˆˆ( ) ( ) ( )T
n n

i n

x kn h kn h i u kn i




   (3.46)

       1 1
T

n kn u kn u kn u kn n       (3.47)

     

     

0 1 1

ˆ ˆ ˆ ˆ0 1 1

T

n

T

n

h h h h n

h h h h n

   

  
 




(3.48)

Thus the linear system output ( )x kn is computed every n samples as a function of

the current block of samples,  n kn , and the remaining ‘tail’ of samples

2 Subsequently,  
1

( )
k

h k



will be written simply as  ( )h k with the understanding that k  in the

IIR linear system impulse response. .
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     , 1 , ,u kn n u kn n u kn n     . Figure 18 shows a set of time indexed

samples    0u u kn   with the first n samples of infinite impulse response h

convolved with input sample block  n kn . The samples prior to  n kn are convolved

with the ‘tail’ of h. For a stable linear system, as n  , the contribution of the ‘tail’

will be less than the contribution of the initial n samples.

Figure 18: Illustration of block sample processing

Observation 1:

Bocks  n kn and  n jn are i.i.d. if j k . Also,  n kn is an n dimensional

random vector that assumes any direction with a positive probability. Moreover, there is

a non-zero probability that   2n kn a  .

Observation 2:

For stable systems  ( )h k and  ˆ( )h k we require 2 2

1 1

ˆ( ) ( ) 1
k k

h k h k
 

 

   Thus

for arbitrarily small 0  , there is an 1 0n  such that for all 1n n :
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1
2

0

1 ( ) 1
n

k

h k 




   (3.49)

1
2

0

ˆ1 ( ) 1
n

k

h k 




   (3.50)

Observation 3:

For arbitrarily small 0  , there is an 2 0n  such that for all 2n n :

   
i n

h i u n i 




  (3.51)

   ˆ
i n

h i u n i 




  (3.52)

We are now in a position to prove identifiability.

Theorem 3.3:

Consider the Wiener system of Figure 16 under Assumptions 3.1 and 3.2 and the

estimate
1 2

1 2
1

1

ˆ ˆ ˆ
ˆ ( )

ˆ ˆ

m m
m

m m
m

z z
G z

z z

  

 

 



  


  




derived from (3.42). Then with

probability one as N  : 2

1

ˆ( ( ( )) ( ( ))) 4
N

k

sign y k sign y k


  if the coefficient

sets are not equal, i.e. 1 1 1 1
ˆ ˆ ˆ ˆ( ) ( )n m n m          

Proof:

Proof of the above Theorem is as follows. If for some k,    ˆ( ) ( )h k h k then the

angle  ˆ,h h  between the two infinite dimensional vectors h and ĥ is greater than

zero. There are two cases: 0 90   and 90 180   . The proofs for the two cases

are similar and we only show the first case.
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3 4 5 4

nh

ˆ
nh

 n kn

2
90 2

Figure 19: Angles between ˆ, , ( )n n nh h kn

Two additional observations are that for ˆh h and large enough block size n, the

impulse response inequality will be manifested in the finite dimensional vector:

ˆ ˆ
n nh h h h   (3.53)

From the observations, there is a large (possibly unknown) n and a small (possibly

unknown) 0  such that:

   

   

1 ,

ˆ ˆ1 ,

n
i n

n
i n

h h i u kn i

h h i u kn i

 

 









   

   




(3.54)

Where 1h  and ˆ 1h  as n  . Also if nh h and ˆ ˆ
nh h as n  then it

follows that at the same time    ˆ ˆ, ,n nh h h h    . Although unknown h is fixed, ĥ
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and  n kn can exist anywhere in an n dimensional vector space. Thus given h and ĥ

there exists a vector  n kn as shown in Figure 19 for large enough n. We do not know

 exactly because we only have finite vectors nh and ˆ
nh . However, because we can

observe  n kn and ˆ
nh , we define   ˆ ,

2 2
n nh kn

 


 
   

 
. Because we cannot

observe nh we make the reasonable assumption that, with some non-zero probability:

  
3

,
2 4 2 4

n nh kn
   


   

       
   

(3.55)

Given the preceding assumptions, we can chose 0  such that the two

conditions below are meet:

0 (1 ) sin
2 2

a 
    (3.56)

(1 ) sin 0
2 4

a 
      (3.57)

In (3.56) the right side goes to a positive value and the middle term goes to zero

as 0  . In (3.57) the left side goes to a negative value and the middle term goes to

zero as 0  This leads to the following equations:

   

   
 

(1 ) sin
2 2

2
cos

2 2 (1 )

2ˆcos ,
(1 )

2ˆ(1 ) cos , (1 )
2 2 (1 )

ˆ

n n

n n

T
n n

a

a

h kn
a

a a
h kn

a

h kn


 

  









   



 

 

 
  

 

 


     
               







(3.58)



www.manaraa.com

68

In addition we have:

   

   

 

(1 ) sin
2 4

2
cos

2 4 (1 )

2
cos ,

(1 )

2
(1 ) cos , (1 )

2 2 (1 )

n n

n n

T
n n

a

a

h kn
a

a a
h kn

a

h kn


 

  









   



 

   

 
  

 


 



      
                

 

(3.59)

Now from (3.54) we have:

   

   ˆ

i n

i n

h i u kn i

h i u kn i

 

 









   

   




(3.60)

Consider again:

 

 

( ) ( ) ( )

ˆ ˆˆ( ) ( ) ( )

T
n n

i n

T
n n

i n

x kn h kn h i u kn i

x kn h kn h i u kn i













  

  




(3.61)

Since we showed the non-zero probability of  T
n nh kn   and  ˆT

n nh kn  , it

is easy to see from the above and Figure 20 that ( ) 0x kn  and ˆ( ) 0x kn  . Equivalently:

2

2

ˆ( ( ( )) ( ( ))) 4

ˆ( ( ( )) ( ( ))) 4

sign x kn sign x kn

sign y kn sign y kn

 

  
(3.62)

By a continuity argument, any vector close enough to  n kn will result in the same

conclusion as (3.62).

Now, from the observations above, the random vectors  n kn are i.i.d. with a
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non-zero probability that  
2

n

a
kn  . They assume any direction with a non-zero

probability. Therefore, for each k, there is a positive probability that  n kn produces

(3.62). More precisely, for each k, there is probability p>0 that

2ˆ( ( ( ) ( ( ))) 4sign y k sign y k  if 1 1 1 1
ˆ ˆ ˆ ˆ( ) ( )n n n n           . From the Borel

lemma,
1

(1 )i

i

p




   , we conclude with probability one as N  there is a k such

that 2
1 1

ˆ( ( ( )) ( ( ))) 4j jsign y k sign y k   . This completes the identifiability proof.

ˆ( ) ( )
i n

h i u n i






, ( )T
n nh kn


0

( ) ( )
i n

h i u n i




 ˆ , ( )T
n nh kn

Figure 20: Number line view of IIR identifiability proof

The result presented above is actually weaker than its counterpart for the FIR case

in Chapter 2. For FIR identification not only does the minimization have one and only

one global minimum but also there are no other local minima. In other words, the

objective function is a monotonic function of the angle between the estimate and the true

but unknown impulse response.

Simulation testing

Given the system in Figure 16 with the assumptions discussed, the identifiability

proof in the previous section tells us that there is only one global minimum at
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1 1 1 1
ˆ ˆ ˆ ˆ( ) ( )n m n m           . For large enough block size n, any other setting

of the estimated parameters results in a non-zero error. Of course proving identifiability

is not the same as proving that the cost function used for identification varies

monotonically with some measure of the distance between 1 1
ˆ ˆ ˆ ˆ( )n m     and

1 1( )n m     . The relationship between impulse response and the transfer function

coefficients is highly nonlinear and complicated, even for the simplest one pole filter.

Simulation is used to demonstrate (but not prove) that an algorithm can be built around

the sign difference cost function.

A system identification experiment for IIR quadrant a priori information was set

up using the circuit of Figure 16 combined with the same quadratic cost function used in

the quadrant a priori information FIR case, i.e. (2.9). The nonlinearity was also the same

as in the FIR case, see Figure 6. The IIR linear system was a notch filter with coefficient

values from Table 7.

1 2
0 1 2

1 2 3 4
1 2 3 4

( )
1

z z
G z

z z z z

  

   

 

   

 


   
(3.63)

The frequency response is shown in the third subplot of Figure 24 and the lattice

structure used for implementation is depicted in Figure 21. Although there are several

filter structures that could be used for simulation, the IIR lattice was chosen because the

reflection coefficient solution is always a point in a hyper-cube with edges in the range

( 1, 1) . Thus, as the algorithm searches, selected impulse response hypothesis can be

easily checked for stability. This is an important feature for an algorithm searching for an

IIR system function. Continuous stability checking of direct form coefficients is far more

complicated.
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Figure 21: Lattice implementation of IIR notch filter

Direct Form Coefficients Lattice Coefficients
Numerator Denominator Ladder Reflection

0 6.800e-1
0 1.0 v0 5.5757e-001

1 -7.495e-17
1 0 v1 -7.495e-17 k1 -3.269e-17

2 5.508e-1
2 2.223e-1 v2 5.508e-1 k2 1.577e-1

3 -5.551e-17 k3 6.670e-17

4 4.096e-1 k4 4.096e-1

Table 7: Simulation example, direct form and lattice coefficients

As described in [21], there is a direct correspondence between direct form

coefficients and lattice coefficients. After the minimum average mean squared error is

reached, the lattice filter coefficients can be easily translated back into direct form

coefficients.

The search procedure makes use of a similar genetic algorithm (GA) as was used

for quadrant a priori information simulation in Chapter 2. The GA is a carefully

organized zero-order iterative numerical search technique based on “Survival of the

fittest”.

The GA used here has an initial population of M estimates, 1 1
ˆ ˆ ˆ ˆ( )n m     .
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These are represented by an equivalent set of M lattice filter coefficients sets

1 1
ˆ ˆˆ ˆ( )n mv v k k  , called parents in GA parlance. As shown in Figure 22, the initial

population of M parents is chosen from the best of an oversized initial population of M*r

parents. The stability required by (3.42) was easy to impose by limiting the magnitude of

the reflection coefficients to 1 .

Some typical GA operating parameters are shown in Table 8. Publications, such

as [12] contain guidance on how to use the GA. This, as well as some ‘tweaking’ was

followed to choose the parameters in Table 8

Parameter: Value used Description:
M 64 Number of parents
Mkk 28 Number of high fitness parents
m varies Number of coefficients per parent
r 100 Initial population over sizing factor
N 48000 Number of samples per block
Gain 0.9 to1.0 New parent = best parent + Gain*(Difference between

randomly chosen low fitness parents)
Map 0.4 High fitness reflection coefficients, Prob(mating)
Mup 0.4 Low fitness reflection coefficients, Prob(mating)

Table 8: Some GA parameters used for simulation

The simulation results using the GA for system identification and the parameters

from Table 8 are summarized in Table 9 below. The run time was 6 minutes in all cases.

N SNR = 5 dB
MSE

SNR = 10 dB
MSE

SNR = 20 dB
MSE

SNR = 40 dB
MSE

5000 0.152 0.101 0.046 0.012
10000 0.092 0.077 0.032 0.0079
20000 0.092 0.042 0.026 0.0086

Table 9: IIR quadrant a priori simulation results
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Figure 22: Flowchart of Genetic Algorithm used for simulation
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Figure 23: Genetic algorithm cost function reduction vs. time

Figure 24: IIR quadrant a priori information simulation results, SNR = 10dB
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Although at 100dB SNR the GA gets very close to the exact answer, as the SNR

decreases, the noise puts a ‘floor’ on the cost function minimum because the decisions

made by the search process are always corrupted by noise and therefore less reliable.

Figure 24 is an example of a simulation results graph for SNR = 10dB. From the center

subplot in Figure 24, note how the transfer function zero at half the sampling frequency is

not as close to the true value as are the two poles. This is because singularities near the

unit circle are more sensitive to coefficient estimation errors. The effect on the stop band

is clearly evident in the third subplot. In this case, a frequency response plot reveals a lot

more than simply listing the mean squared coefficient error. Finally, notice in the top

subplot of Figure 24 that most of the GA estimation work is done within 2 minutes. The

refinement produced by a long run time may not be needed in a practical situation.
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CHAPTER 4
FIR LINEAR PART IDENTIFICATION WITH BACKLASH

Equation Chapter (Next) Section 1

This chapter shows how the impulse response of the FIR part of a Wiener system

with a backlash nonlinearity may be identified using a carefully defined set of minimal a-

priori information on the nonlinear part. Backlash is called a memory nonlinearity

because the output depends on the difference between current and previous inputs.

Backlash is very similar to valve stiction, discussed in [31]. In general, nonlinear

ascending and descending functions result because the output responds differently when

the direction of the input changes.

The identification approach of Chapter 1 was to observe the sign of unknown

intermediate signal ( )x k by processing output ( )y k through sign function (2.2). This

chapter applies the technique of Chapter 1 to the identification of the FIR coefficients of

a Wiener system with a more complicated output nonlinearity.

Several papers have offered identification techniques for Hammerstein systems

with backlash nonlinearities. A Hammerstein system has the nonlinearity preceding the

linear block, i.e. the blocks are swapped relative to the Wiener system. Both [9] and [10],

written by the same authors, require a carefully contrived input signal for identification of

input backlash. Although [9] does not require any a priori knowledge of nonlinearity

points or structure, [10] requires the nonlinearity to have straight line borders. By

contrast, in [6] and [7] the input signal is only required to persistently excite (see [20],

page 412) the linear block. However, [6] requires backlash and hysteresis nonlinearities

to be described by only one parameter. To accomplish the one parameter description, the

nonlinear characteristics are limited to straight lines with slopes of zero, one or infinity.
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In [28] the input backlash nonlinearity of a Hammerstien system is described by a

four parameter model:  a d a dm m c c . Here ac and am are the ascending function

X-axis intersection and slope, respectively. Parameters dc and dm are the descending

function X-axis intersection and slope, respectively. This description would apply to

Figure 25 if  af x and  df x are straight lines. The linear filter numerator and

denominator parameters (see (3.1)) are concatenated to produce a parameter vector for

the complete system:

 1 1a d a d m nm m c c        (4.1)

The recursive least mean squares algorithm (RLS) is used to compute an estimate for  :

 
1

ˆ ( ) ( )arg min
N

T

k

y k k
 

    (4.2)

At each estimation step, data vector ( )T k is updated with the best estimate of

intermediate signal ( )x k . The authors of [11] applied the techniques of [28] to a Wiener

system with a four parameter output backlash function. They also added a convergence

analysis. An advantage to the approaches of both [11] and [28] is that, unlike [4] and [5],

a very general input distribution is used for identification.

One additional paper that analyzes a Wiener system with backlash is [9]. The

author starts with the same four parameter description as [28]. In [9], a bounded

parameter approach is taken to identify the linear block parameters. A two step

procedure is used. The first step uses a multiamplitude square wave input sequence to

bound the parameters of the output backlash. The second step uses a pseudo-random

binary sequence (PRBS) to estimate bounds on the intermediate signal.

To the author’s knowledge, this chapter is the first algorithm for identifying an
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output backlash Wiener system by observing only the output polarity. The technique

presented in this chapter extends the quadrant a priori information results of Chapter One

to the Wiener system with backlash.

Problem statement

In this chapter, the linear system in Chapter 2, Figure 1 is described by:

( )

( ) [ ( ), ( 1),..., ( 1)] ,    1, 2,...
T k

x k u k u k u k n h k N



    
 (4.3)

Note that the length n only needs to be an upper bound if the exact FIR length is

unknown. The input ( )u k is an independent and identically distributed (i.i.d.) Gaussian

random sequence. Parameter vector nh is to be identified. As in Chapter 2 and

Chapter 3, the first non-zero element of h is positive and 1h  . The internal variable

x(k) is assumed unknown and both x(k) and y(k) are assumed bounded for all k.

We say that the parameter vector h is identifiable from the input-output data set

 
1

( ), ( )
N

k
k y k


if h can be uniquely identified from the Wiener system model and the data

set, independent of the unknown nonlinearity f(.). Equivalently, there does not exist a

different pair  ,h f that would produce an identical input-output data set  
1

( ), ( )
N

k
k y k



In this chapter we prove identifiability given a set of minimal a priori information on the

unknown f(.). A further question is algorithm convergence. In other words, can a cost

function be constructed that is monotonic with some measure of the distance between the

true and the estimated FIR coefficients? This is discussed in detail but not proven.

An example of a backlash function is shown in Figure 25. Backlash is called a

memory nonlinearity because the output characteristic is different for ascending or
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descending inputs; the output depends on the current and previous inputs. Backlash is

commonly used to describe the transfer of motion across gears. While the driving gear

switches direction, the driven gear has a period of non-motion until the driving gear

reengages it. Backlash is unavoidable in mechanical systems that must change direction.

aC x

y

dC

( )af x

( )df x

Figure 25: Backlash nonlinearity example

With reference to Figure 25, backlash is based on ascending and descending

function  ( )af x k and  ( )df x k , respectively. These are unknown and can be different.

For 1, 2,k N  and random input (0)x , backlash can be expressed as:

1

1 1

1

( ( )) ( ) ( ( 1))

( ) ( 1) ( ( 1)) ( ) ( ( 1))

( ( )) ( ) ( ( 1))

a a

d a

d d

f x k if x k f y k

y k y k if f y k x k f y k

f x k if x k f y k



 



  


     
  

(4.4)
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We start with the following set of minimum a-priori information:

Assumption 4.1:

1. The ascending and descending functions are monotonic and have no points in

common (i.e. they do not cross over each other).

2. The X-axis intersection points aC and dC are known.

For ease of presentation and without loss of generality, we set 0a dC C C   .

Identification approach

Consider the Wiener system inside the dotted box at the top of Figure 26. The

nonlinearity  ( )f x k is the backlash function in Figure 25. Because the output can only

increase on the ascending function,  ( ( )) ( ) ( 1) 1dsign y k sign y k y k    indicates an

output on the ascending function. Similarly, because the output can only decrease on the

descending function,  ( ( )) ( ) ( 1) 1dsign y k sign y k y k     indicates a descending

function output:

( ( )) 1 ( ) 0 ( ) ( ( ))

( ( )) 0 ( ) 0

( ( )) 1 ( ) 0 ( ) ( ( ))

d d a

d d

d d d

sign y k y k y k f x k

sign y k y k

sign y k y k y k f x k

    

  

     

(4.5)

From Figure 26 consider output ( )y k and unknown intermediate signal

( ) ( )Tx k k h . For this description, consider that noise ( ) 0v k  The basis of the

identification algorithm is that, for an ascending function output,

   ( ) ( )sign y k sign x k C  and for a descending function output

   ( ) ( )sign y k sign x k C  . Now consider the estimated intermediate signal

ˆˆ( ) ( )Tx k k h , where ĥ is an estimate of h . If ĥ h then, because the FIR linear parts
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have the same input, ˆ( ) ( )x k x k . In this case for an ascending function output,

   ˆ( ) ( )sign y k sign x k C  and, for a descending function output,

   ˆ( ) ( )sign y k sign x k C  . Using output ( )dy k from Figure 26 we can detect when

ĥ h by the following error signal:

   

   

ˆ( ) ( ) ( ) ( ) 0

( ) 0 ( ) 0

ˆ( ) ( ) ( ) ( ) 0

T
d

d

T
d

sign y k v k sign k h C y k

e k y k

sign y k v k sign k h C y k





    



 


   

(4.6)

ˆ( )x k

( )dy k

1

0

ˆ( ) ( )
n

i

h i u k i






1

0

( ) ( )
n

i

h i u k i




 ))(( kxf

Figure 26: Wiener system identification with backlash

Our goal in this chapter is to show that, for an ascending function output,

 ( )sign y k is equal to  ( )sign x k C =  ˆ( )sign x k C for all k if and only if ĥ h

and, for a descending function output,  ( )sign y k is equal to  ( )sign x k C =

 ˆ( )sign x k C for all k if and only if ĥ h . Thus the error ( )e k is zero for
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1, 2,k N  if and only if ĥ h . A cost function based on these sign differences is

referred to throughout the chapter:

 2

1

1
( )

N

N
k

J e k
N 

  (4.7)

The first question is obviously the identifiability, that is are the above equations

based on signs sufficient to determine the unknown h? A further question is

convergence; is a cost function based on the mean squared error 2( )e k monotonically

increasing with  ˆ,h h   ? The following analysis proves identifiability and discusses

convergence in detail. We focus on the ascending function, a similar analysis applies to

the descending function.

Identifiability analysis

In addition to Assumption 4.1 we have:

Assumption 4.2:

Random input ( )u k is i.i.d., Gaussian and zero mean.

A Gaussian input distribution is sufficient for identifiability.

If the output nonlinearity were static, as in Chapters 2 and 3, then with a Gaussian

input the results of [7] would apply and there would be nothing new to present. However

the Bussgang theorem does not apply to the backlash memory nonlinearity because there

is no simple way to calculate the proportionality constant. Although some input

distribution generality is lost, we gain the ability to handle a much more complicated

output nonlinearity.

Referring to Figure 27 and defining  ˆ,h h   , the following development is
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easy to see:

2 SPW

SPW

SPW SPZ SPZ

SPZ

  

 

  



  

  

     

 

(4.8)

And due to vertical angles, UPW SPZ    . Therefore,

0 0UPW SPZ     . This will be important to the development below.

Theorem 4.1:

Consider the two dimensional system of Figure 1 under Assumptions 4.1 and 4.2.

For any unit vector ĥ h , with probability one as N  there exist some

1 k N  so that

     ˆ( ) ( ) ( )T Tsign y k sign k h C sign k h C     .

Proof:

The identifiability proof has three parts. We prove identifiability with respect to

the ascending function, the same proof can be applied to the descending function:

1. We show that for any unit vector ĥ h , represented in a rectangular

coordinate space, there exist two regions with non-zero area such that for

( )k in either region:    ˆ( ) ( )T Tsign k h C sign k h C    . These are

called sign difference regions. Sign difference regions were first introduced in

Chapter 2.

2. We show that as N  , some ( )k will be in one of these regions with a

non-decreasing probability greater than zero.

     ˆ( ) ( ) ( )T Tsign y k sign k h C sign k h C    
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3. Finally we show that when ( )k is in one of the sign difference regions there

is a non-zero probability that output ( )y k will be on the ascending function.

Proof of part 1:

Figure 27 shows h and ĥ as well as two tangents to a circle of radius C .

Tangent SU is normal to h and tangent ZW is normal to ĥ . The equation for SU is

( )T k h C  and the equation for ZW is ˆ( )T k h C  . From this we conclude that:

1

3

ˆ( ) ( ) and ( )

ˆ( ) ( ) and ( )

T T

T T

k S k h C k h C

k S k h C k h C

  

  

   

   
(4.9)

Considering the ascending function (descending is similar) we will show that:

     
     

1

3

ˆ( ) 1 and ( ) ( ) 1 and ( ) 1

ˆ( ) 1 and ( ) ( ) 1 and ( ) 1

T T
d

T T
d

sign y k k S sign k h C sign k h C

sign y k k S sign k h C sign k h C

  

  

        

        
(4.10)

When ( )k is in region 2S , ( )x k and ˆ( )x k are both less than C and for ( )k in

4S , ( )x k and ˆ( )x k are both greater than C . Thus, ( ) 0e k  for ( )k in these regions.

Now, Observation 1 established that UPW SPZ    in Figure 27. Thus for

ĥ h both regions exist with area greater than zero.

Proof of part 2:

For the two dimensional case considered here, Assumption 4.2 implies that joint

probability distribution  ( ) ( ), ( 1)kf u k u k  will be continuous and non-zero everywhere

inside a circle of radius r C . Because the boundaries of 1S , 2S , 3S and 4S are

tangent to a circle of radius C , the intersection of a circle of radius r C with 1S and 3S

will have probability greater than zero. In addition, due to the continuous input
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probability distribution, the angle of ( )k will also have some continuous distribution

from 0 to 2 . Thus, as N  , some ( )k will be in 1S or 3S with non-zero

probability.

( )u k

( 1)u k 

h

ĥ

C

UP

W

S

1S

2S

3S

4S

O

( )k

Z

Figure 27: Sign difference regions for backlash

Proof of part 3:

For the ascending function (descending is similar) identifiability is based on the

non-zero probability:

1 3or and{( ( ) ( ) ) ( ( ( )) 1)} 0dP k S k S sign y k     (4.11)
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This is equivalent to either of the next two equations:

ˆ{( ( ) 0) ( ( ) ) (and and ( ( )) 1)} 0dP y k x k C sign y k    (4.12)

ˆ{( ( ) 0) ( ( ) ) (and and ( ( )) 1)} 0dP y k x k C sign y k    (4.13)

For  ( ) 1dsign y k  , output ( )y k must be a point on the ascending function. To

guarantee this for some k , we show the non-zero probability of sequences

 ( , ) ( 1), , ( )k L x k L x k     , where 0 k   and L k , that force ( )y k on to the

ascending function.

Unknown intermediate signal ( )x k results from passing i.i.d. Gaussian signal

( )u k thru a linear system. Because ( )x k is a stationary random Gaussian process at

constant time increments, we can calculate a probability density function for sequence

( , )k L , for example:

   
 

   11
( 1), , ( ) ( 1), , ( )

2
( 1), , ( ) 1

1
( 1), , ( )

2

T
k L k k L k

x k L x k L
f k L k e

    

 
 

    

  
  

 


 (4.14)

Here,  is the covariance matrix of ( , )k L . For a two dimensional ( 2)n  example:

1 (0) (1) 0 0 0 0 0

(1) (0) 1 (0) (1) 0 0 0 0

0 (1) (0) 1 (0) (1) 0 0 0

0 0 0 0 0 (1) (0) 1

h h

h h h h

h h h h

h h



 
 
 
 
 
 
  







      



(4.15)

We can now analyze the probability in (4.12) or (4.13), above. Because the input and

intermediate signals are zero mean and ˆ 1h h  , the variance of input ( )u k will

determine the probability of ( ) ( ) 0x k C y k   , see Figure 25. Thus, for a large

enough input power, it is reasonable to assume the existence of  ( ), ( )x k y k with
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( ) and ( ) 0x k C y k  . We want to show the non-zero probability that ( )y k is on the

ascending function. This is based on the following necessary and sufficient condition:

 1 ( 1) ( )af y k x k     (4.16)

Note that ( 1)y k  may already be on the ascending function. If so, the condition (4.16)

keeps it there. Due to Assumption 4.2, the above constraint defines a nonzero probability

mass starting at  1 ( 1)af y k  and extending to infinity. Thus, any output ( )y k has a

non-zero probability of being on the ascending function. A similar analysis could be

carried out for the descending function.

From the first conjunction of (4.1) we have shown that for a selected ( ) 0y k  ,

there is a non-zero probability that ( ) ( 1) 0y k y k   . We still need to show the nonzero

probability that, for the same time index k, ˆ( )x k C .

Referring to the previous discussion about the variance of zero mean stationary

input ( )u k , it is reasonable to expect ( )k C  for some k. (note that ( )k C  is not

useful for identification). Also, we expect the angle of ( )k will be continuous

distributed between 0 and 2 . The condition ( ) ( ) 0x k C y k   can be interpreted as:

  1( ) ( ) cos ( ( ), ) ( ( ), ) cos
( )

C
x k k h k h C k h

k
   


  

      
 

‖ ‖‖ ‖
‖ ‖

(4.17)

In Figure 3, SU extends from h   to h   . As shown above, ( )k on

SU and within this sector will result in ( )x k C , ( ) 0y k  . Because of the continuous

distribution of the angle of ( )k , this ( )k will be on SZ with some positive probability

and, because it is in 1S , will satisfy ˆ( )x k C . This concludes the identifiability proof.
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The indentifiability proof can be extended to a higher dimensional case. Let h

and ĥ be unit vectors in n for 2n  . Consider that h and ĥ span a plane in a two

dimensional subspace of n :

ˆ ˆ( , ) [ :  , ]S h h h h R      (4.18)

Let ( ), r       denote the unit circle on this plane. Further, let (0)r h

and ˆ( )r h  . Without loss of generality, rotate the coordinate reference to line up

ˆ( , )S h h and ( )r  with the first two axis in n . Assume there is a rotation matrix T that

performs this transformation such that:

 

 

 

( ) ( )   ( )  0  0   0

ˆ ˆ ( ) ( )   ( )  0  0   0

(0) 1  0  0   0

( ) ( )

T

T

r

T

r

r

r cos sin

h Th r cos sin

h Th r

k T k

  

  

 



  

  








(4.19)

Note that both ( )k and rotated input sample vector ( )r k are vectors of

stationary, zero-mean, i.i.d., Gaussian samples. Due to the rotation, ( )r k may be fully

represented in the two dimensional subspace spanned by h and ĥ . However, recall that:

 ˆˆ( ) ( ) ( ) ( )  ( 1) ( ) 0 0 T
r r r rx k k h u k cos u k sin      (4.20)

By making ( )x k and ˆ( )x k dependent on only the first two components of ( )T
r k we

force the problem into the two dimensional framework already proven:

 
 

1 1ˆ ˆ ˆˆ( ) ( ) ( ) ( )

( ) ( ) ( 1) ( ) 0 0 

TT T
r r r r

r r

x k k h T k T h k h

u k cos u k sin

  

 

   

  
(4.21)
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Convergence discussion

We have shown identifiability; that our identification approach has only one

global minimum ĥ h as N  . For convergence, the probability of ( )k in 1S or

3S together with the probability of being on the ascending (or descending) function must

be monotonic with 0 2   . To study this, let us partition the output into the

following three events:

    
 

    

1

1

( ( )) 1 ( ) ( 1) , Ouput on Ascending Function

( ( )) 0 , Ouput Inbetween Functions

( ( )) 1 ( ) ( 1) , Ouput on Descending Function

p d a

z d

n d d

D sign y k x k f y k

D sign y k

D sign y k x k f y k





     

 

    

(4.22)

This represents a complete partition in that       1p z nP D P D P D   Now we define

the following sign difference compound event:

 ˆ ˆ(( ( ) 0) and ( ( ) )) or (( ( ) 0) and ( ( ) ))A y k x k C y k x k C     (4.23)

What we would like to be monotonic  with is:

           , , | |p n p p n nP A D P A D P A D P D P A D P D   (4.24)

The partition , ,p z nD D D D    depends on:

1. The true but unknown impulse response h that determines joint probability of

pairs  ( 1), ( )x k x k of intermediate samples. In general, samples in these

pairs are not independent because of (4.15).

2. The variance of the i.i.d. input samples ( )u k .

3. The shape of the ascending and descending functions

Thus, the sample by sample probability of events in partition D are impossible to

characterize without a priori knownledge of the above three items. Also the probability
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of events , ,p z nD D D changes every sample because they depend on the output ( 1)y k  .

The non-zero ( )zP D has the effect of randomly zeroing ( )dy k in (4.6) and nullifying the

contribution to (4.7) of ( )k occupying a sign difference region based on  ˆ,h h  .

Another factor that greatly confounds the convergence question is that different

values of h result in different covariance between pairs of intermediate samples. Thus a

general proof of convergence is not possible for this approach.

Noise immunity enhancement

All of the preceeding analysis has assumed that noise term ( ) 0v k  in Figure 26.

In this case, (4.5) works well for indicating when output ( )y k is on the ascending or

descending function. However, adding non-zero noise to the output confuses the

detection mechanism of (4.5) because ( ) ( ) ( 1)dy k y k y k   will likely be non-zero

even if ( )y k is between the ascending and descending functions. With added noise, the

detection mechanism of ( )dy k will be invalid as almost every output point will be

indicated on one of the two functions.

))(( kxf

( )a k

1

0

( ) ( )
n

i

h i u k i






( )d k



1
2

1
2

Figure 28: Improved ascending/descending function detection
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To improve estimation performance, we modify the ascending/descending function

detection as shown in Figure 28.

( ) ( 1) ( ) 1, ( ) 0 ( ) ( ( ))

( ) ( 1) ( ) 0, ( ) 0

( ) ( 1) ( ) 0, ( ) 1 ( ) ( ( ))

a

d

y k y k a k d k y k f x k

y k y k a k d k

y k y k a k d k y k f x k







       

     

       

(4.25)

Thus  sets a “deadzone” to mitigate the effects of output noise. We modify (4.6) as:

   

   

ˆ( ) ( ) ( ) 1, ( ) 0

( ) 0 ( ) 0, ( ) 0

ˆ( ) ( ) ( ) 0, ( ) 1

T

T

sign y k sign k h C a k d k

e k a k d k

sign y k sign k h C a k d k





    



  


   

(4.26)

Note that the circuit of Figure 28 is designed to preclude the condition ( ) 1, ( ) 1a k b k  .

In the above,  gives the ( ) 1a k  or ( ) 1d k  decisions noise immunity.

Simulation testing

To demonstrate the performance of our algorithm, we provide two numerical

simulations. Simulation A estimates a 9th order FIR filter:

1 2 3 4

5 6 7 8 9

( ) 0.265 0.556 0.523 0.419 0.301

0.205 0.136 0.088 0.056 0.035

A z z z z z

z z z z z

   

    

    

    
(4.27)

The true and estimated frequency responses are plotted as the dotted and solid lines,

respectively, in Figure 30. Simulation B estimates an 8th order FIR filter:

2 4 6 8( ) 0.764 0.448 0.413 0.091 0.190B z z z z z        (4.28)

The true and estimated frequency responses are plotted as the dotted and solid lines,

respectively, in Figure 31.

The backlash function, plotted in Figure 29, satisfies Assumption 4.1 with X-axis

intersection points 1 . Figure 29 was generated by simulation. First a set of 10000
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backlash input/output points  ( ), ( ), ( )dx k y k y k was collected from Simulation A. Then

the outputs that were not on the ascending or descending function were transfered to the

origin so that the plot area betwwen the two functions was not filled in.

The input ( )u k is Gaussian with variance 2 2  . Uncorrelated Gaussian noise

is added to the output to produce SNR of 10dB, 20dB and 30dB. A genetic algorithm

(GA), similar to that described in Chapter 3 was used to search for the true FIR

coefficients. The number of 'parents' was 64 and the number of iterations was set to 200.

The GA is a zero-order organized search algorithm that solves the following

minimization problem:

2

1

1ˆ ( )

ˆ 1

argmin
N

k

h e k
N

h







‖ ‖

(4.29)

With ( )e k defined by (4.25) and (4.26). To show the improvement obtained by these

modified error equations, we set noise threshold 0  and 2  , where  is the

standard deviation of the input samples.

Note that the GA is not necessarily optimum and has not been proven to converge

in every case. The results presented here are the averages of 4 Monte-Carlo simulations.

The FIR means squared coefficient error is defined as ˆMSE h h  . This demonstrates

the effectiveness of the identification algorithm. However, we should emphasize that the

uniqueness of the estimate ĥ is achieved as sample record size N  . For finite N, a

slight variation in ĥ may not result in a change in the number of 1( )k S  or 3( )k S 

for 1, 2,...,k N . For these simulations, N is set to 10000, 20000, 40000 and 80000

samples.
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Figure 29: Backlash function used in simulations A and B

Simulation A results are shown in Table 10 and Table 11. Table 10 shows the

expected decrease in MSE as N and/or SNR are increased. Also, as the noise threshold is

increased, the MSE decreases by a factor of 2 in most cases. Table 11 illustrates how the

noise interferes with the ascending/descending function decision. With the noise

threshold set to zero, non-zero added output noise causes the two point output difference

in (4.25) to always be non-zero so that the ascending function is indicated for about 50%

of samples and the descending function is chosen for the other 50%. This is clearly

invalid and setting 2  alleviates this problem. Note that this setting has not been

shown to be optimum; there may be a different setting that produces even better results.

Figure 30 shows the frequency domain estimation performance for SNR=10, N=10000
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and 2  . Instead of plotting impulse response estimate ĥ directly on top of true

impulse response h, Figure 30 compares the equivalent frequency responses. This

approach better reveals the actual estimation performance because very slight impulse

response inaccuracies can lead to large changes in the zeros of the system function. Parts

of the spectral response that depend on these zeros can be greatly affected. Note that the

horizontal scale of Figure 30 is in radians per sample = 2 in sf F , where sF is the

sampling rate and inf is the input frequency.

While Simulation A estimated a lowpass filter, Simulation B shows an alternate

estimation for a bandstop filter. Results are shown in Table 12, Table 13 and Figure 31.

All the Simulation A comments above apply directly to Simulation B.

Compare Table 1 in Chapter 2 and the results presented here. From Table 13

consider the case where N=80000, SNR = 20dB and noise threshold is 2 . The total

number of ascending and descending function output points are 31498 and the MSE is

0.0177. Compare this with Table 1 where N = 35000, SNR = 20dB and resulting MSE =

0.0211. The MSE results are close. Although the input distributions and the linear parts

are different, a reasonable explanation for the similar MSE results is that the quadrant

scheme of Chapter 2 was based on a priori knowledge of a single point on a single

function nonlinearity and the algorithm presented here is based on a priori knowledge of

a single point on each of the functions in a bi-functional memory nonlinearity.

This chapter has shown that the FIR linear part of a Wiener system with backlash

can be identified by comparing the output polarity of the unknown system with that of an

adjustable known system. For proof of identifiability, a Gaussian random input is shown

to be sufficient. A detailed discussion of convergence is offered.
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N Noise
Threshold

SNR = 10dB SNR = 20 dB SNR = 30 dB
MSE CPU(min) MSE CPU(min) MSE CPU(min)

10000 0 0.0620 6.2 0.0664 8.3 0.0561 4.8
2 0.0317 4.1 0.0242 4.17 0.0245 6.06

20000 0 0.0393 14.4 0.0312 16.2 0.0364 9.4
2 0.0191 7.9 0.0202 8.00 0.0177 11.80

40000 0 0.0425 27.6 0.0332 25.4 0.0316 18.8
2 0.0190 15.9 0.0140 16.2 0.0133 22.32

80000 0 0.0339 59.7 0.0288 41.3 0.0211 41.9
2 0.0163 35.6 0.0148 47.8 0.0134 61.13

Table 10: Simulation A, FIR backlash identification performance

N Noise
Threshold

SNR = 10dB SNR = 20 dB SNR = 30 dB
Asc Des Asc Des Asc Des

10000 0 4990 5010 4973 5027 5007 4993
2 1028 1011 1275 1284 1577 1581

20000 0 10039 9961 10003 9997 9959 10041
2 2011 2024 2550 2565 3222 3202

40000 0 20016 19984 20057 19943 20022 19978
2 3970 4014 5069 5146 6367 6364

80000 0 40011 39989 39976 40024 39994 40006
2 8158 8172 10263 10242 12805 12691

Table 11: Simulation A backlash ascending/descending statistics

Figure 30: Simulation A, FIR backlash frequency response matching
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N Noise
Threshold

SNR = 10dB SNR = 20 dB SNR = 30 dB
MSE CPU(min) MSE CPU(min) MSE CPU(min)

10000 0 0.0633 5.1 0.0616 6.2 0.0635 4.9
2 0.0320 4.3 0.0304 4.5 0.0267 4.7

20000 0 0.0527 9.6 0.0491 14.8 0.0547 9.6
2 0.0351 8.3 0.0250 8.6 0.0223 8.8

40000 0 0.0495 25.6 0.0497 32.6 0.0496 18.8
2 0.0338 16.8 0.0194 17.5 0.0212 17.9

80000 0 0.0491 56.4 0.0498 51.3 0.0451 43.0
2 0.0235 37.4 0.0177 39.3 0.0185 46.7

Table 12: Simulation B, FIR backlash identification performance

N Noise
Threshold

SNR = 10dB SNR = 20 dB SNR = 30 dB
Asc Des Asc Des Asc Des

10000 0 4967 5033 4997 5003 4986 5014
2 1595 1583 1968 1981 2214 2227

20000 0 10021 9979 9962 10038 10002 9998
2 3157 3168 3947 3966 4416 4423

40000 0 19993 20007 19999 20001 20059 19941
2 6302 6302 7893 7945 8982 8928

80000 0 39972 40028 39956 40044 39953 40047
2 12736 12726 15737 15761 17794 17828

Table 13: Simulation B backlash ascending/descending statistics

Figure 31: Simulation B, FIR backlash frequency response matching
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CHAPTER 5
CONCLUSION

This thesis has shown that, given certain very minimal a priori information on the

nonlinearity, both the FIR and IIR linear parts of a Wiener system are identifiable without

a Gaussian distributed input in all cases except the memory nonlineaerity. The unknown

nonlinearity is not necessarily invertible and need not be parameterized in any way.

The focus has been on the study of the least amount of a priori information

needed on the nonlinearity to identify the linear system. As shown, very little

information is actually needed although intuition suggests that the algorithms will

converge more quickly if more information is available. The following algorithms were

developed and tested:

1. Quadrant a priori information

2. Single point a priori information

3. Locally monotonic a priori information

For each algorithm, identifiability and in some cases convergence proofs were

provided for various combinations of Wiener system FIR and IIR linear blcoks and

memory and non-memory nonlinear blocks. The effect of threshold settings on noise

performance was discussed and tested at length.

Hopefully, this work will benefit future practitioners of this important field of

nonlinear system identification.
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APPENDIX

This appendix provides the proof that, for an N sample experiment:

 
2

2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( ) 0 as
N

T T

k

E sign k h sign k h F N
N

  


 
    

 


Note that the law of large numbers invoked above requires the random samples of

the squared error to be i.d.d. Because of the overlap in the FIR shift register for changes

in k less than n, the squared error samples are not necessarily i.d.d.

For k j n  , ( ) and ( )k j  are independent and we have : ( )
N

w
F

Nlim


 
  

 
,

here w is the sign difference count in the set of N samples.

 

   

22
ˆ( ( ) ) ( ( ) ) 4 ( )

ˆ ˆ2 2 ( ( ) ) ( ( ) ) 4 ( ) 2 2 ( ( ) ) ( ( ) ) 4 ( )

2 2
2 2 4 2 2 4 0

T T

T T T T

N N

E sign k h sign k h F

E sign k h sign k h F E sign j h sign j h F

N w w N w w

N N N Nlim lim

  

     

 

   
 

    

            
               

          

We find that for k=j:

 

 

22
ˆ( ( ) ) ( ( ) ) 4 ( )

ˆ ˆ2 2 ( ( ) ) ( ( ) ) 4 ( ) 2 2 ( ( ) ) ( ( ) ) 4 ( )

ˆ ˆ4 4 ( ( ) ) ( ( ) ) 8 ( ) 4 ( ( ) ) ( ( ) )

4 ( ( ) )

T T

T T T T

T T T T

T

E sign k h sign k h F

E sign k h sign k h F sign j h sign j h F

sign j h sign j h F sign k h sign k h

sign k h sign
E

  

     

    



   
 

       
   

  




2

ˆ ˆ( ( ) ) ( ( ) ) ( ( ) )

ˆ8 ( ) ( ( ) ) ( ( ) ) 8 ( )

ˆ8 ( ) ( ( ) ) ( ( ) ) 16 ( )

T T T

T T

T T

k h sign j h sign j h

F sign k h sign k h F

F sign j h sign j h F

  

   

   

 
 
 
 
  
 
  
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2

2 2 2

4 4 8 ( ) 8 ( ) 4 8 ( ) 4 8 ( ) 16 ( )

8 ( ) 8 ( ) 16 ( ) 16 ( ) 16 ( ) 16 ( )

F F F F F

F F F F F F

    

     

        

     

Finally, for k j n  , we claim that:

  
22

ˆ( ( ) ) ( ( ) ) 4 ( ) ( , )T TE sign k h sign k h F c k j    

For some constant c where 0 ( , )c k j c    . The proof proceeds as follows:

 
2 2

1

2

2

1

2

1

| |

2

0

ˆ1 ([( ( ( ) ) ( ( ) )) 4 ( )])

ˆ(( ( ( ) ) ( ( ) )) 4 ( ))

ˆ
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(( ( ( ) ) ( ( ) )) 4

( )

( ))

1 (16

T TN
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T T

T T
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N
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k
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N N

sign k h sign k h F

N

sign j h sign j h F

N

E sign k h sign k h F
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  

 

  



  


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   
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 

 
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 
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
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



E

E

1
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( )(1 ( )) 2( 1) ) (16 ( )(1 ( )) 2( 1) )

(16 ( )(1 ( )) 2( 1) )

N

k
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 


     
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







Therefore:

 
2

2

1

1 ˆ( ( ) ) ( ( ) ) 4 ( ) 0
N

T T

N k

E sign k h sign k h F
Nlim   

 

  
    
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

This implies, in probability:
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